IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v33y2008i7p1665-1677.html
   My bibliography  Save this article

The wind potential impact on the maximum wind energy penetration in autonomous electrical grids

Author

Listed:
  • Kaldellis, J.K.

Abstract

According to long-term wind speed measurements the Aegean Archipelago possesses excellent wind potential, hence properly designed wind energy applications can substantially contribute to fulfill the energy requirements of the island societies. On top of this, in most islands the electricity production cost is extremely high, while significant insufficient power supply problems are often encountered, especially during the summer. Unfortunately, the stochastic behaviour of the wind and the important fluctuations of daily and seasonal electricity load pose a strict penetration limit for the contribution of wind energy in the corresponding load demand. The application of this limit is necessary in order to avoid hazardous electricity grid fluctuations and to protect the existing thermal power units from operating near or below their technical minima. In this context, the main target of the proposed study is to present an integrated methodology able to estimate the maximum wind energy penetration in autonomous electrical grids on the basis of the available wind potential existing in the Aegean Archipelago area. For this purpose a large number of representative wind potential types have been investigated and interesting conclusions have been derived.

Suggested Citation

  • Kaldellis, J.K., 2008. "The wind potential impact on the maximum wind energy penetration in autonomous electrical grids," Renewable Energy, Elsevier, vol. 33(7), pages 1665-1677.
  • Handle: RePEc:eee:renene:v:33:y:2008:i:7:p:1665-1677
    DOI: 10.1016/j.renene.2007.09.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148107002790
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2007.09.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kaldellis, J.K., 2003. "Feasibility evaluation of Greek State 1990–2001 wind energy program," Energy, Elsevier, vol. 28(14), pages 1375-1394.
    2. Kaldellis, J. K., 2002. "An integrated time-depending feasibility analysis model of wind energy applications in Greece," Energy Policy, Elsevier, vol. 30(4), pages 267-280, March.
    3. Kaldellis, J. K. & Kavadias, K. A. & Filios, A. E. & Garofallakis, S., 2004. "Income loss due to wind energy rejected by the Crete island electrical network - the present situation," Applied Energy, Elsevier, vol. 79(2), pages 127-144, October.
    4. Kaldellis, J. K., 2004. "Investigation of Greek wind energy market time-evolution," Energy Policy, Elsevier, vol. 32(7), pages 865-879, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liao, Rih-Neng & Chen, Tsai-Hsiang & Chang, Wei-Shiou, 2016. "Fast screening techniques and process for grid interconnection of wind-storage systems," Energy, Elsevier, vol. 115(P1), pages 770-780.
    2. Ouammi, A. & Sacile, R. & Mimet, A., 2010. "Wind energy potential in Liguria region," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 289-300, January.
    3. Amrollahi, Mohammad Hossein & Bathaee, Seyyed Mohammad Taghi, 2017. "Techno-economic optimization of hybrid photovoltaic/wind generation together with energy storage system in a stand-alone micro-grid subjected to demand response," Applied Energy, Elsevier, vol. 202(C), pages 66-77.
    4. Bilal, Boudy & Adjallah, Kondo Hloindo & Yetilmezsoy, Kaan & Bahramian, Majid & Kıyan, Emel, 2021. "Determination of wind potential characteristics and techno-economic feasibility analysis of wind turbines for Northwest Africa," Energy, Elsevier, vol. 218(C).
    5. Ye, Lin & Zhang, Cihang & Xue, Hui & Li, Jiachen & Lu, Peng & Zhao, Yongning, 2019. "Study of assessment on capability of wind power accommodation in regional power grids," Renewable Energy, Elsevier, vol. 133(C), pages 647-662.
    6. Tsoutsos, T. & Tsitoura, I. & Kokologos, D. & Kalaitzakis, K., 2015. "Sustainable siting process in large wind farms case study in Crete," Renewable Energy, Elsevier, vol. 75(C), pages 474-480.
    7. Connolly, D. & Lund, H. & Mathiesen, B.V. & Leahy, M., 2011. "The first step towards a 100% renewable energy-system for Ireland," Applied Energy, Elsevier, vol. 88(2), pages 502-507, February.
    8. John K. Kaldellis, 2021. "Supporting the Clean Electrification for Remote Islands: The Case of the Greek Tilos Island," Energies, MDPI, vol. 14(5), pages 1-22, March.
    9. Murthy, K.S.R. & Rahi, O.P., 2016. "Preliminary assessment of wind power potential over the coastal region of Bheemunipatnam in northern Andhra Pradesh, India," Renewable Energy, Elsevier, vol. 99(C), pages 1137-1145.
    10. Ucar, Aynur & Balo, Figen, 2009. "Investigation of wind characteristics and assessment of wind-generation potentiality in Uludag-Bursa, Turkey," Applied Energy, Elsevier, vol. 86(3), pages 333-339, March.
    11. Behera, Sasmita & Sahoo, Subhrajit & Pati, B.B., 2015. "A review on optimization algorithms and application to wind energy integration to grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 214-227.
    12. Bououden, S. & Chadli, M. & Filali, S. & El Hajjaji, A., 2012. "Fuzzy model based multivariable predictive control of a variable speed wind turbine: LMI approach," Renewable Energy, Elsevier, vol. 37(1), pages 434-439.
    13. Ouammi, Ahmed & Sacile, Roberto & Zejli, Driss & Mimet, Abdelaziz & Benchrifa, Rachid, 2010. "Sustainability of a wind power plant: Application to different Moroccan sites," Energy, Elsevier, vol. 35(10), pages 4226-4236.
    14. Kougias, Ioannis & Szabó, Sándor & Nikitas, Alexandros & Theodossiou, Nicolaos, 2019. "Sustainable energy modelling of non-interconnected Mediterranean islands," Renewable Energy, Elsevier, vol. 133(C), pages 930-940.
    15. Rehman, Shafiqur & Al-Hadhrami, Luai M. & Alam, Md. Mahbub, 2015. "Pumped hydro energy storage system: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 586-598.
    16. Kapsali, M. & Kaldellis, J.K., 2010. "Combining hydro and variable wind power generation by means of pumped-storage under economically viable terms," Applied Energy, Elsevier, vol. 87(11), pages 3475-3485, November.
    17. Kaldellis, J.K. & Kapsali, M. & Kavadias, K.A., 2010. "Energy balance analysis of wind-based pumped hydro storage systems in remote island electrical networks," Applied Energy, Elsevier, vol. 87(8), pages 2427-2437, August.
    18. Tsantopoulos, Georgios & Arabatzis, Garyfallos & Tampakis, Stilianos, 2014. "Public attitudes towards photovoltaic developments: Case study from Greece," Energy Policy, Elsevier, vol. 71(C), pages 94-106.
    19. Kaldellis, J.K. & Kapsali, M. & Tiligadas, D., 2012. "Presentation of a stochastic model estimating the wind energy contribution in remote island electrical networks," Applied Energy, Elsevier, vol. 97(C), pages 68-76.
    20. Kapsali, M. & Anagnostopoulos, J.S. & Kaldellis, J.K., 2012. "Wind powered pumped-hydro storage systems for remote islands: A complete sensitivity analysis based on economic perspectives," Applied Energy, Elsevier, vol. 99(C), pages 430-444.
    21. Kaldellis, J.K. & Kapsali, M. & Katsanou, Ev., 2012. "Renewable energy applications in Greece—What is the public attitude?," Energy Policy, Elsevier, vol. 42(C), pages 37-48.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaldellis, J.K. & Kavadias, K.A. & Filios, A.E., 2009. "A new computational algorithm for the calculation of maximum wind energy penetration in autonomous electrical generation systems," Applied Energy, Elsevier, vol. 86(7-8), pages 1011-1023, July.
    2. Kaldellis, J.K. & Kapsali, M. & Tiligadas, D., 2012. "Presentation of a stochastic model estimating the wind energy contribution in remote island electrical networks," Applied Energy, Elsevier, vol. 97(C), pages 68-76.
    3. Kaldellis, J.K. & Zafirakis, D., 2007. "Present situation and future prospects of electricity generation in Aegean Archipelago islands," Energy Policy, Elsevier, vol. 35(9), pages 4623-4639, September.
    4. Kaldellis, J. K. & Kavadias, K. A. & Filios, A. E. & Garofallakis, S., 2004. "Income loss due to wind energy rejected by the Crete island electrical network - the present situation," Applied Energy, Elsevier, vol. 79(2), pages 127-144, October.
    5. Zafirakis, D. & Chalvatzis, K. & Kaldellis, J.K., 2013. "“Socially just” support mechanisms for the promotion of renewable energy sources in Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 478-493.
    6. Kaldellis, J.K., 2011. "Critical evaluation of financial supporting schemes for wind-based projects: Case study Greece," Energy Policy, Elsevier, vol. 39(5), pages 2490-2500, May.
    7. Kaldellis, J.K. & Kapsali, M. & Kavadias, K.A., 2010. "Energy balance analysis of wind-based pumped hydro storage systems in remote island electrical networks," Applied Energy, Elsevier, vol. 87(8), pages 2427-2437, August.
    8. Kaldellis, J.K. & Kapsali, M., 2013. "Shifting towards offshore wind energy—Recent activity and future development," Energy Policy, Elsevier, vol. 53(C), pages 136-148.
    9. Kaldellis, John K. & Zafirakis, D., 2011. "The wind energy (r)evolution: A short review of a long history," Renewable Energy, Elsevier, vol. 36(7), pages 1887-1901.
    10. Tsoutsos, Theocharis & Drandaki, Maria & Frantzeskaki, Niki & Iosifidis, Eleftherios & Kiosses, Ioannis, 2009. "Sustainable energy planning by using multi-criteria analysis application in the island of Crete," Energy Policy, Elsevier, vol. 37(5), pages 1587-1600, May.
    11. Kaundinya, Deepak Paramashivan & Balachandra, P. & Ravindranath, N.H., 2009. "Grid-connected versus stand-alone energy systems for decentralized power--A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2041-2050, October.
    12. Mostafaeipour, Ali, 2010. "Feasibility study of offshore wind turbine installation in Iran compared with the world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1722-1743, September.
    13. Sarah Barrows & Kendall Mongird & Brian Naughton & Rachid Darbali-Zamora, 2021. "Valuation of Distributed Wind in an Isolated System," Energies, MDPI, vol. 14(21), pages 1-20, October.
    14. Barrows, S.E. & Homer, J.S. & Orrell, A.C., 2021. "Valuing wind as a distributed energy resource: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    15. Dhillon, Javed & Kumar, Arun & Singal, S.K., 2014. "Optimization methods applied for Wind–PSP operation and scheduling under deregulated market: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 682-700.
    16. Akintayo Temiloluwa Abolude & Wen Zhou, 2018. "Assessment and Performance Evaluation of a Wind Turbine Power Output," Energies, MDPI, vol. 11(8), pages 1-15, August.
    17. Kaldellis, J.K., 2007. "The contribution of small hydro power stations to the electricity generation in Greece: Technical and economic considerations," Energy Policy, Elsevier, vol. 35(4), pages 2187-2196, April.
    18. Papathanassiou, Stavros A. & Boulaxis, Nikos G., 2006. "Power limitations and energy yield evaluation for wind farms operating in island systems," Renewable Energy, Elsevier, vol. 31(4), pages 457-479.
    19. Kaldellis, J.K. & El-Samani, K. & Koronakis, P., 2005. "Feasibility analysis of domestic solar water heating systems in Greece," Renewable Energy, Elsevier, vol. 30(5), pages 659-682.
    20. Anagnostopoulos, J.S. & Papantonis, D.E., 2008. "Simulation and size optimization of a pumped–storage power plant for the recovery of wind-farms rejected energy," Renewable Energy, Elsevier, vol. 33(7), pages 1685-1694.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:33:y:2008:i:7:p:1665-1677. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.