IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v30y2005i11p1689-1712.html
   My bibliography  Save this article

Performance analysis of dehumidification rotating wheel using liquid desiccant

Author

Listed:
  • Hamed, Ahmed M.
  • Khalil, A.
  • Kabeel, A.E.
  • Bassuoni, M.M.
  • Elzahaby, A.M.

Abstract

In the present work, theoretical and experimental evaluation of the effect of bed configuration and operating conditions on the performance of desiccant dehumidification system has been carried out. A new rotating absorption disk has been designed and constructed to be tested in the experimental work. The desiccant wheel has a cylindrical shape of 50-cm diameter and 10cm thickness. The flow area of this bed is consisted of 350 narrow slots, which are uniformly distributed over the cross section of the cylindrical bed. Each slot has a cylindrical shape and constructed from a steel spring of 100mm length and 20mm inside diameter. To form the absorbing surface in the bed, each spring is coated with a thick cloth layer impregnated with lithium chloride solution, which is used as the working desiccant in these experiments.

Suggested Citation

  • Hamed, Ahmed M. & Khalil, A. & Kabeel, A.E. & Bassuoni, M.M. & Elzahaby, A.M., 2005. "Performance analysis of dehumidification rotating wheel using liquid desiccant," Renewable Energy, Elsevier, vol. 30(11), pages 1689-1712.
  • Handle: RePEc:eee:renene:v:30:y:2005:i:11:p:1689-1712
    DOI: 10.1016/j.renene.2004.11.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148104004586
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2004.11.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hamed, Ahmed M., 2003. "Desorption characteristics of desiccant bed for solar dehumidification/humidification air conditioning systems," Renewable Energy, Elsevier, vol. 28(13), pages 2099-2111.
    2. Hamed, A.M., 2003. "Experimental investigation on the natural absorption on the surface of sandy layer impregnated with liquid desiccant," Renewable Energy, Elsevier, vol. 28(10), pages 1587-1596.
    3. Hamed, Ahmed M., 2002. "Theoretical and experimental study on the transient adsorption characteristics of a vertical packed porous bed," Renewable Energy, Elsevier, vol. 27(4), pages 525-541.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Misha, S. & Mat, S. & Ruslan, M.H. & Sopian, K., 2012. "Review of solid/liquid desiccant in the drying applications and its regeneration methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4686-4707.
    2. Eicker, Ursula & Schneider, Dietrich & Schumacher, Jürgen & Ge, Tianshu & Dai, Yanjun, 2010. "Operational experiences with solar air collector driven desiccant cooling systems," Applied Energy, Elsevier, vol. 87(12), pages 3735-3747, December.
    3. Angrisani, Giovanni & Capozzoli, Alfonso & Minichiello, Francesco & Roselli, Carlo & Sasso, Maurizio, 2011. "Desiccant wheel regenerated by thermal energy from a microcogenerator: Experimental assessment of the performances," Applied Energy, Elsevier, vol. 88(4), pages 1354-1365, April.
    4. Rafique, M. Mujahid & Gandhidasan, P. & Bahaidarah, Haitham M.S., 2016. "Liquid desiccant materials and dehumidifiers – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 179-195.
    5. Yang, Yifan & Cui, Gary & Lan, Christopher Q., 2019. "Developments in evaporative cooling and enhanced evaporative cooling - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    6. Fang, Y.T. & Liu, T. & Zhang, Z.C. & Gao, X.N., 2014. "Silica gel adsorbents doped with Al, Ti, and Co ions improved adsorption capacity, thermal stability and aging resistance," Renewable Energy, Elsevier, vol. 63(C), pages 755-761.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hamed, Ahmed M., 2005. "Experimental investigation on the adsorption/desorption processes using solid desiccant in an inclined-fluidized bed," Renewable Energy, Elsevier, vol. 30(12), pages 1913-1921.
    2. Ramzy, Ahmed K. & Kadoli, Ravikiran & T.P., Ashok Babu, 2013. "Experimental and theoretical investigations on the cyclic operation of TSA cycle for air dehumidification using packed beds of silica gel particles," Energy, Elsevier, vol. 56(C), pages 8-24.
    3. N’Tsoukpoe, Kokouvi Edem & Yamegueu, Daniel & Bassole, Justin, 2014. "Solar sorption refrigeration in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 318-335.
    4. El-Ghonemy, A.M.K., 2012. "Fresh water production from/by atmospheric air for arid regions, using solar energy: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6384-6422.
    5. William, G.E. & Mohamed, M.H. & Fatouh, M., 2015. "Desiccant system for water production from humid air using solar energy," Energy, Elsevier, vol. 90(P2), pages 1707-1720.
    6. Shamim, Jubair A. & Hsu, Wei-Lun & Paul, Soumyadeep & Yu, Lili & Daiguji, Hirofumi, 2021. "A review of solid desiccant dehumidifiers: Current status and near-term development goals in the context of net zero energy buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    7. Kabeel, A.E., 2009. "Adsorption–desorption operations of multilayer desiccant packed bed for dehumidification applications," Renewable Energy, Elsevier, vol. 34(1), pages 255-265.
    8. Hamed, Ahmed M., 2003. "Desorption characteristics of desiccant bed for solar dehumidification/humidification air conditioning systems," Renewable Energy, Elsevier, vol. 28(13), pages 2099-2111.
    9. Reif, John H. & Alhalabi, Wadee, 2015. "Solar-thermal powered desalination: Its significant challenges and potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 152-165.
    10. Fathy, Mohamed H. & Awad, Mohamed M. & Zeidan, El-Shafei B. & Hamed, Ahmed M., 2020. "Solar powered foldable apparatus for extracting water from atmospheric air," Renewable Energy, Elsevier, vol. 162(C), pages 1462-1489.
    11. Hassan, H.Z. & Mohamad, A.A., 2012. "A review on solar cold production through absorption technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5331-5348.
    12. Yao, Ye & Yang, Kun & Liu, Shiqing, 2014. "Study on the performance of silica gel dehumidification system with ultrasonic-assisted regeneration," Energy, Elsevier, vol. 66(C), pages 799-809.
    13. Shafeian, Nafise & Ranjbar, A.A. & Gorji, Tahereh B., 2022. "Progress in atmospheric water generation systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    14. Yeboah, S.K. & Darkwa, J., 2016. "A critical review of thermal enhancement of packed beds for water vapour adsorption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1500-1520.
    15. Mawire, A. & McPherson, M. & van den Heetkamp, R.R.J., 2009. "Thermal performance of a small oil-in-glass tube thermal energy storage system during charging," Energy, Elsevier, vol. 34(7), pages 838-849.
    16. Thirugnanasambandam, Mirunalini & Iniyan, S. & Goic, Ranko, 2010. "A review of solar thermal technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 312-322, January.
    17. Talaat, M.A. & Awad, M.M. & Zeidan, E.B. & Hamed, A.M., 2018. "Solar-powered portable apparatus for extracting water from air using desiccant solution," Renewable Energy, Elsevier, vol. 119(C), pages 662-674.
    18. Allouhi, A. & Kousksou, T. & Jamil, A. & Bruel, P. & Mourad, Y. & Zeraouli, Y., 2015. "Solar driven cooling systems: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 159-181.
    19. Kabeel, A.E., 2007. "Solar powered air conditioning system using rotary honeycomb desiccant wheel," Renewable Energy, Elsevier, vol. 32(11), pages 1842-1857.
    20. Wansheng Yang & Hao Deng & Zhangyuan Wang & Xudong Zhao & Song He, 2017. "Performance Investigation of the Novel Solar-Powered Dehumidification Window for Residential Buildings," Energies, MDPI, vol. 10(9), pages 1-17, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:30:y:2005:i:11:p:1689-1712. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.