IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v29y2004i8p1367-1382.html
   My bibliography  Save this article

Heat transfer dynamics in an inflatable-tunnel solar air heater

Author

Listed:
  • Flores-Irigollen, A.
  • Fernández, J.L.
  • Rubio-Cerda, E.
  • Poujol, F.T.

Abstract

A mathematical model that describes the dynamics of the heat transfer in an inflatable-tunnel solar collector for air heating is proposed and validated. The model is distributed-parameters, one-dimensional and unsteady-state. It considers the thermal inertia of a pebble bed acting as the absorber surface and is constituted by three equations that describe the temperature distributions of the three system components: polyethylene cover, transfer fluid (air) and absorber surface.

Suggested Citation

  • Flores-Irigollen, A. & Fernández, J.L. & Rubio-Cerda, E. & Poujol, F.T., 2004. "Heat transfer dynamics in an inflatable-tunnel solar air heater," Renewable Energy, Elsevier, vol. 29(8), pages 1367-1382.
  • Handle: RePEc:eee:renene:v:29:y:2004:i:8:p:1367-1382
    DOI: 10.1016/j.renene.2003.11.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148103003616
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2003.11.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cortés, A. & Piacentini, R., 1990. "Improvement of the efficiency of a bare solar collector by means of turbulence promoters," Applied Energy, Elsevier, vol. 36(4), pages 253-261.
    2. Aboul-Enein, S. & El-Sebaii, A.A. & Ramadan, M.R.I. & El-Gohary, H.G., 2000. "Parametric study of a solar air heater with and without thermal storage for solar drying applications," Renewable Energy, Elsevier, vol. 21(3), pages 505-522.
    3. Ahmad, N.T., 2001. "Agricultural solar air collector made from low-cost plastic packing film," Renewable Energy, Elsevier, vol. 23(3), pages 663-671.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saxena, Abhishek & Varun, & El-Sebaii, A.A., 2015. "A thermodynamic review of solar air heaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 863-890.
    2. Oztop, Hakan F. & Bayrak, Fatih & Hepbasli, Arif, 2013. "Energetic and exergetic aspects of solar air heating (solar collector) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 59-83.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. VijayaVenkataRaman, S. & Iniyan, S. & Goic, Ranko, 2012. "A review of solar drying technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2652-2670.
    2. Türk Togrul, İnci & Pehlιvan, Dursun & Akosman, Cevdet, 2004. "Development and testing of a solar air-heater with conical concentrator," Renewable Energy, Elsevier, vol. 29(2), pages 263-275.
    3. Jain, Dilip & Tewari, Pratibha, 2015. "Performance of indirect through pass natural convective solar crop dryer with phase change thermal energy storage," Renewable Energy, Elsevier, vol. 80(C), pages 244-250.
    4. El-Sebaii, A.A. & Aboul-Enein, S. & Ramadan, M.R.I. & El-Gohary, H.G., 2002. "Empirical correlations for drying kinetics of some fruits and vegetables," Energy, Elsevier, vol. 27(9), pages 845-859.
    5. Bal, Lalit M. & Satya, Santosh & Naik, S.N., 2010. "Solar dryer with thermal energy storage systems for drying agricultural food products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2298-2314, October.
    6. Singh Bisht, Vijay & Kumar Patil, Anil & Gupta, Anirudh, 2018. "Review and performance evaluation of roughened solar air heaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 954-977.
    7. El-Sebaii, A.A. & Al-Snani, H., 2010. "Effect of selective coating on thermal performance of flat plate solar air heaters," Energy, Elsevier, vol. 35(4), pages 1820-1828.
    8. Yang, Ming & Yang, Xudong & Li, Xing & Wang, Zhifeng & Wang, Pengsu, 2014. "Design and optimization of a solar air heater with offset strip fin absorber plate," Applied Energy, Elsevier, vol. 113(C), pages 1349-1362.
    9. Murthy, M.V. Ramana, 2009. "A review of new technologies, models and experimental investigations of solar driers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 835-844, May.
    10. Boroze, Tchamye & Desmorieux, Hélène & Méot, Jean-Michel & Marouzé, Claude & Azouma, Yaovi & Napo, Kossi, 2014. "Inventory and comparative characteristics of dryers used in the sub-Saharan zone: Criteria influencing dryer choice," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1240-1259.
    11. Dhiman, Prashant & Thakur, N.S. & Kumar, Anoop & Singh, Satyender, 2011. "An analytical model to predict the thermal performance of a novel parallel flow packed bed solar air heater," Applied Energy, Elsevier, vol. 88(6), pages 2157-2167, June.
    12. Ceylin Şirin & Azim Doğuş Tuncer & Ataollah Khanlari, 2023. "Improving the Performance of Unglazed Solar Air Heating Walls Using Mesh Packing and Nano-Enhanced Absorber Coating: An Energy–Exergy and Enviro-Economic Assessment," Sustainability, MDPI, vol. 15(21), pages 1-17, October.
    13. Wang, Yang & Li, Heping & Ortega-Fernández, Iñigo & Huang, Xuefeng & Jiang, Bo & Bielsa, Daniel & Palomo, Elena, 2021. "The time-varying radiation applied in the temperature-sensitive reaction system stabilized with heat storage technology," Applied Energy, Elsevier, vol. 283(C).
    14. Karwa, Rajendra & Solanki, S.C & Saini, J.S, 2001. "Thermo-hydraulic performance of solar air heaters having integral chamfered rib roughness on absorber plates," Energy, Elsevier, vol. 26(2), pages 161-176.
    15. Tabish Alam & Chandan Swaroop Meena & Nagesh Babu Balam & Ashok Kumar & Raffaello Cozzolino, 2021. "Thermo-Hydraulic Performance Characteristics and Optimization of Protrusion Rib Roughness in Solar Air Heater," Energies, MDPI, vol. 14(11), pages 1-19, May.
    16. Oztop, Hakan F. & Bayrak, Fatih & Hepbasli, Arif, 2013. "Energetic and exergetic aspects of solar air heating (solar collector) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 59-83.
    17. Kalaiarasi, G. & Velraj, R. & Vanjeswaran, M.N. & Ganesh Pandian, N., 2020. "Experimental analysis and comparison of flat plate solar air heater with and without integrated sensible heat storage," Renewable Energy, Elsevier, vol. 150(C), pages 255-265.
    18. Saxena, Abhishek & Srivastava, Ghanshyam & Tirth, Vineet, 2015. "Design and thermal performance evaluation of a novel solar air heater," Renewable Energy, Elsevier, vol. 77(C), pages 501-511.
    19. Tchinda, Réné, 2009. "A review of the mathematical models for predicting solar air heaters systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1734-1759, October.
    20. Rai, Shalini & Chand, Prabha & Sharma, S.P., 2018. "Evaluation of thermo hydraulic effect on offset finned absorber solar air heater," Renewable Energy, Elsevier, vol. 125(C), pages 39-54.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:29:y:2004:i:8:p:1367-1382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.