IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v40y2014icp1240-1259.html
   My bibliography  Save this article

Inventory and comparative characteristics of dryers used in the sub-Saharan zone: Criteria influencing dryer choice

Author

Listed:
  • Boroze, Tchamye
  • Desmorieux, Hélène
  • Méot, Jean-Michel
  • Marouzé, Claude
  • Azouma, Yaovi
  • Napo, Kossi

Abstract

A survey was carried out in Togo, Benin and Burkina Faso involving 140 respondents and three climatic zones. Ten typical types of dryers with batch operating and natural convection were inventoried. Analysis of the results showed that: (1) Traditional sun dryers were widely used everywhere from 1 to 4000kg per cycle, costing €0 to €7.63 per m2 drying area. (2) Low power solar dryers were mostly used in the Sahel and Sudan-Sahel tropical climate, from 5 to 1000kg, costing from €9.11 to €238.55 per m2 of tray. (3) Gas dryers were used in all climatic zones at around 100kg per cycle, with a high drying power, costing from €107.52 to €181.75 per m2 of tray. The acquisition of dryers depended mostly on the distance between provider and user and on the means of dissemination.

Suggested Citation

  • Boroze, Tchamye & Desmorieux, Hélène & Méot, Jean-Michel & Marouzé, Claude & Azouma, Yaovi & Napo, Kossi, 2014. "Inventory and comparative characteristics of dryers used in the sub-Saharan zone: Criteria influencing dryer choice," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1240-1259.
  • Handle: RePEc:eee:rensus:v:40:y:2014:i:c:p:1240-1259
    DOI: 10.1016/j.rser.2014.07.058
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032114005103
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2014.07.058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bala, B.K. & Mondol, M.R.A. & Biswas, B.K. & Das Chowdury, B.L. & Janjai, S., 2003. "Solar drying of pineapple using solar tunnel drier," Renewable Energy, Elsevier, vol. 28(2), pages 183-190.
    2. Fournier, M. & Guinebault, A., 1995. "The “shell” dryer—modelling and experimentation," Renewable Energy, Elsevier, vol. 6(4), pages 459-463.
    3. Murthy, M.V. Ramana, 2009. "A review of new technologies, models and experimental investigations of solar driers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 835-844, May.
    4. Sharma, Vinod Kumar & Colangelo, Antonio & Spagna, Giuseppe, 1995. "Experimental investigation of different solar dryers suitable for fruit and vegetable drying," Renewable Energy, Elsevier, vol. 6(4), pages 413-424.
    5. Sarsavadia, P.N., 2007. "Development of a solar-assisted dryer and evaluation of energy requirement for the drying of onion," Renewable Energy, Elsevier, vol. 32(15), pages 2529-2547.
    6. Fudholi, A. & Sopian, K. & Ruslan, M.H. & Alghoul, M.A. & Sulaiman, M.Y., 2010. "Review of solar dryers for agricultural and marine products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 1-30, January.
    7. Arinze, E.A. & Schoenau, G.J. & Sokhansanj, S., 1999. "Design and experimental evaluation of a solar dryer for commercial high-quality hay production," Renewable Energy, Elsevier, vol. 16(1), pages 639-642.
    8. Augustus Leon, M. & Kumar, S. & Bhattacharya, S. C., 2002. "A comprehensive procedure for performance evaluation of solar food dryers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(4), pages 367-393, August.
    9. Sharma, Atul & Chen, C.R. & Vu Lan, Nguyen, 2009. "Solar-energy drying systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1185-1210, August.
    10. Amir, Eddy J. & Grandegger, K. & Esper, A. & Sumarsono, M. & Djaya, C. & Mühlbauer, W., 1991. "Development of a multi-purpose solar tunnel dryer for use in humid tropics," Renewable Energy, Elsevier, vol. 1(2), pages 167-176.
    11. Gbaha, P. & Yobouet Andoh, H. & Kouassi Saraka, J. & Kaménan Koua, B. & Touré, S., 2007. "Experimental investigation of a solar dryer with natural convective heat flow," Renewable Energy, Elsevier, vol. 32(11), pages 1817-1829.
    12. Esper, A. & Mühlbauer, W., 1998. "Solar drying - an effective means of food preservation," Renewable Energy, Elsevier, vol. 15(1), pages 95-100.
    13. VijayaVenkataRaman, S. & Iniyan, S. & Goic, Ranko, 2012. "A review of solar drying technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2652-2670.
    14. Dissa, A.O. & Bathiebo, J. & Kam, S. & Savadogo, P.W. & Desmorieux, H. & Koulidiati, J., 2009. "Modelling and experimental validation of thin layer indirect solar drying of mango slices," Renewable Energy, Elsevier, vol. 34(4), pages 1000-1008.
    15. Koua, Kamenan Blaise & Fassinou, Wanignon Ferdinand & Gbaha, Prosper & Toure, Siaka, 2009. "Mathematical modelling of the thin layer solar drying of banana, mango and cassava," Energy, Elsevier, vol. 34(10), pages 1594-1602.
    16. Aboul-Enein, S. & El-Sebaii, A.A. & Ramadan, M.R.I. & El-Gohary, H.G., 2000. "Parametric study of a solar air heater with and without thermal storage for solar drying applications," Renewable Energy, Elsevier, vol. 21(3), pages 505-522.
    17. Forson, F.K. & Nazha, M.A.A. & Akuffo, F.O. & Rajakaruna, H., 2007. "Design of mixed-mode natural convection solar crop dryers: Application of principles and rules of thumb," Renewable Energy, Elsevier, vol. 32(14), pages 2306-2319.
    18. Bennamoun, Lyes, 2011. "Reviewing the experience of solar drying in Algeria with presentation of the different design aspects of solar dryers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3371-3379, September.
    19. Pangavhane, Dilip R. & Sawhney, R.L. & Sarsavadia, P.N., 2002. "Design, development and performance testing of a new natural convection solar dryer," Energy, Elsevier, vol. 27(6), pages 579-590.
    20. Janjai, S. & Tung, P., 2005. "Performance of a solar dryer using hot air from roof-integrated solar collectors for drying herbs and spices," Renewable Energy, Elsevier, vol. 30(14), pages 2085-2095.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Assoa, Ya Brigitte & Sauzedde, François & Boillot, Benjamin, 2018. "Numerical parametric study of the thermal and electrical performance of a BIPV/T hybrid collector for drying applications," Renewable Energy, Elsevier, vol. 129(PA), pages 121-131.
    2. Fudholi, Ahmad & Sopian, Kamaruzzaman & Gabbasa, Mohamed & Bakhtyar, B. & Yahya, M. & Ruslan, Mohd Hafidz & Mat, Sohif, 2015. "Techno-economic of solar drying systems with water based solar collectors in Malaysia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 809-820.
    3. Tiwari, Sumit & Tiwari, G.N. & Al-Helal, I.M., 2016. "Development and recent trends in greenhouse dryer: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1048-1064.
    4. Assoa, Ya Brigitte & Sauzedde, François & Boillot, Benjamin & Boddaert, Simon, 2017. "Development of a building integrated solar photovoltaic/thermal hybrid drying system," Energy, Elsevier, vol. 128(C), pages 755-767.
    5. Yaovi Ouézou Azouma & Lynn Drigalski & Zdeněk Jegla & Marcus Reppich & Vojtěch Turek & Maximilian Weiß, 2019. "Indirect Convective Solar Drying Process of Pineapples as Part of Circular Economy Strategy," Energies, MDPI, vol. 12(15), pages 1-18, July.
    6. Lamidi, Rasaq. O. & Jiang, L. & Pathare, Pankaj B. & Wang, Y.D. & Roskilly, A.P., 2019. "Recent advances in sustainable drying of agricultural produce: A review," Applied Energy, Elsevier, vol. 233, pages 367-385.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. VijayaVenkataRaman, S. & Iniyan, S. & Goic, Ranko, 2012. "A review of solar drying technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2652-2670.
    2. Fudholi, A. & Sopian, K. & Ruslan, M.H. & Alghoul, M.A. & Sulaiman, M.Y., 2010. "Review of solar dryers for agricultural and marine products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 1-30, January.
    3. EL-Mesery, Hany S. & EL-Seesy, Ahmed I. & Hu, Zicheng & Li, Yang, 2022. "Recent developments in solar drying technology of food and agricultural products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    4. Murthy, M.V. Ramana, 2009. "A review of new technologies, models and experimental investigations of solar driers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 835-844, May.
    5. Tiwari, Sumit & Tiwari, G.N. & Al-Helal, I.M., 2016. "Development and recent trends in greenhouse dryer: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1048-1064.
    6. Fudholi, Ahmad & Sopian, Kamaruzzaman & Gabbasa, Mohamed & Bakhtyar, B. & Yahya, M. & Ruslan, Mohd Hafidz & Mat, Sohif, 2015. "Techno-economic of solar drying systems with water based solar collectors in Malaysia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 809-820.
    7. El Hage, Hicham & Herez, Amal & Ramadan, Mohamad & Bazzi, Hassan & Khaled, Mahmoud, 2018. "An investigation on solar drying: A review with economic and environmental assessment," Energy, Elsevier, vol. 157(C), pages 815-829.
    8. Sangamithra, A. & Swamy, Gabriela John & Prema, R. Sorna & Priyavarshini, R. & Chandrasekar, V. & Sasikala, S., 2014. "An overview of a polyhouse dryer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 902-910.
    9. Fudholi, Ahmad & Sopian, Kamaruzzaman & Bakhtyar, B. & Gabbasa, Mohamed & Othman, Mohd Yusof & Ruslan, Mohd Hafidz, 2015. "Review of solar drying systems with air based solar collectors in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1191-1204.
    10. Fudholi, Ahmad & Sopian, Kamaruzzaman, 2019. "A review of solar air flat plate collector for drying application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 333-345.
    11. Nabnean, S. & Janjai, S. & Thepa, S. & Sudaprasert, K. & Songprakorp, R. & Bala, B.K., 2016. "Experimental performance of a new design of solar dryer for drying osmotically dehydrated cherry tomatoes," Renewable Energy, Elsevier, vol. 94(C), pages 147-156.
    12. Li, Zhimin & Zhong, Hao & Tang, Runsheng & Liu, Tao & Gao, Wenfeng & Zhang, Yue, 2006. "Experimental investigation on solar drying of salted greengages," Renewable Energy, Elsevier, vol. 31(6), pages 837-847.
    13. Lingayat, Abhay Bhanudas & Chandramohan, V.P. & Raju, V.R.K. & Meda, Venkatesh, 2020. "A review on indirect type solar dryers for agricultural crops – Dryer setup, its performance, energy storage and important highlights," Applied Energy, Elsevier, vol. 258(C).
    14. Patil, Rajendra & Gawande, Rupesh, 2016. "A review on solar tunnel greenhouse drying system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 196-214.
    15. Badaoui, Ouassila & Hanini, Salah & Djebli, Ahmed & Haddad, Brahim & Benhamou, Amina, 2019. "Experimental and modelling study of tomato pomace waste drying in a new solar greenhouse: Evaluation of new drying models," Renewable Energy, Elsevier, vol. 133(C), pages 144-155.
    16. Mustayen, A.G.M.B. & Mekhilef, S. & Saidur, R., 2014. "Performance study of different solar dryers: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 463-470.
    17. Pirasteh, G. & Saidur, R. & Rahman, S.M.A. & Rahim, N.A., 2014. "A review on development of solar drying applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 133-148.
    18. Kumar, Mahesh & Sansaniwal, Sunil Kumar & Khatak, Pankaj, 2016. "Progress in solar dryers for drying various commodities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 346-360.
    19. Jain, Dilip & Tewari, Pratibha, 2015. "Performance of indirect through pass natural convective solar crop dryer with phase change thermal energy storage," Renewable Energy, Elsevier, vol. 80(C), pages 244-250.
    20. Yataganbaba, Alptug & Kurtbaş, İrfan, 2016. "A scientific approach with bibliometric analysis related to brick and tile drying: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 206-224.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:40:y:2014:i:c:p:1240-1259. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.