IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v29y2004i7p1109-1119.html
   My bibliography  Save this article

Application of SPCTRAL2 parametric model in estimating spectral solar irradiances over polluted Athens atmosphere

Author

Listed:
  • Jacovides, C.P.
  • Kaskaoutis, D.G.
  • Tymvios, F.S.
  • Asimakopoulos, D.N.

Abstract

Results obtained using SPCTRAL2 parametric model for the polluted urban atmosphere of Athens, Greece, were analysed and compared with ground level experimental spectral solar irradiance measurements and spectrally integrated solar irradiances in two discrete narrow bands, ultraviolet and visible. For the aerosol characterization, the aerosol optical depth evaluated at 500 nm was used as the basic input parameter. The algorithm used seems to reproduce the experimental solar spectral irradiances adequately depending on the aerosol model used. The results obtained have been explained through mean bias and root mean square statistical deviations and the resultant influence of the aerosol volume spectra.

Suggested Citation

  • Jacovides, C.P. & Kaskaoutis, D.G. & Tymvios, F.S. & Asimakopoulos, D.N., 2004. "Application of SPCTRAL2 parametric model in estimating spectral solar irradiances over polluted Athens atmosphere," Renewable Energy, Elsevier, vol. 29(7), pages 1109-1119.
  • Handle: RePEc:eee:renene:v:29:y:2004:i:7:p:1109-1119
    DOI: 10.1016/j.renene.2003.12.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148103003938
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2003.12.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jacovides, C. P. & Kontoyiannis, H., 1995. "Statistical procedures for the evaluation of evapotranspiration computing models," Agricultural Water Management, Elsevier, vol. 27(3-4), pages 365-371, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jacovides, C.P. & Boland, J. & Asimakopoulos, D.N. & Kaltsounides, N.A., 2010. "Comparing diffuse radiation models with one predictor for partitioning incident PAR radiation into its diffuse component in the eastern Mediterranean basin," Renewable Energy, Elsevier, vol. 35(8), pages 1820-1827.
    2. Kambezidis, H.D. & Psiloglou, B.E. & Karagiannis, D. & Dumka, U.C. & Kaskaoutis, D.G., 2017. "Meteorological Radiation Model (MRM v6.1): Improvements in diffuse radiation estimates and a new approach for implementation of cloud products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 616-637.
    3. Psiloglou, B.E. & Kambezidis, H.D. & Kaskaoutis, D.G. & Karagiannis, D. & Polo, J.M., 2020. "Comparison between MRM simulations, CAMS and PVGIS databases with measured solar radiation components at the Methoni station, Greece," Renewable Energy, Elsevier, vol. 146(C), pages 1372-1391.
    4. Madkour, M.A. & El-Metwally, M. & Hamed, A.B., 2006. "Comparative study on different models for estimation of direct normal irradiance (DNI) over Egypt atmosphere," Renewable Energy, Elsevier, vol. 31(3), pages 361-382.
    5. Otunla, T.A., 2019. "Estimates of clear-sky solar irradiances over Nigeria," Renewable Energy, Elsevier, vol. 131(C), pages 778-787.
    6. Jacovides, C.P. & Assimakopoulos, V.D. & Tymvios, F.S. & Theophilou, K. & Asimakopoulos, D.N., 2006. "Solar global UV (280–380nm) radiation and its relationship with solar global radiation measured on the island of Cyprus," Energy, Elsevier, vol. 31(14), pages 2728-2738.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tahiri, Adel Zeggaf & Anyoji, H. & Yasuda, H., 2006. "Fixed and variable light extinction coefficients for estimating plant transpiration and soil evaporation under irrigated maize," Agricultural Water Management, Elsevier, vol. 84(1-2), pages 186-192, July.
    2. Jacovides, C. P., 1998. "Reply to comment on "Statistical procedures for the evaluation of evapotranspiration computing models"," Agricultural Water Management, Elsevier, vol. 37(1), pages 95-97, June.
    3. DehghaniSanij, Hossein & Yamamoto, Tahei & Rasiah, Velu, 2004. "Assessment of evapotranspiration estimation models for use in semi-arid environments," Agricultural Water Management, Elsevier, vol. 64(2), pages 91-106, January.
    4. Montoya, F. & Camargo, D. & Domínguez, A. & Ortega, J.F. & Córcoles, J.I., 2018. "Parametrization of Cropsyst model for the simulation of a potato crop in a Mediterranean environment," Agricultural Water Management, Elsevier, vol. 203(C), pages 297-310.
    5. Toumi, J. & Er-Raki, S. & Ezzahar, J. & Khabba, S. & Jarlan, L. & Chehbouni, A., 2016. "Performance assessment of AquaCrop model for estimating evapotranspiration, soil water content and grain yield of winter wheat in Tensift Al Haouz (Morocco): Application to irrigation management," Agricultural Water Management, Elsevier, vol. 163(C), pages 219-235.
    6. Matin Ahooghalandari & Mehdi Khiadani & Mina Esmi Jahromi, 2016. "Developing Equations for Estimating Reference Evapotranspiration in Australia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(11), pages 3815-3828, September.
    7. Berti, Antonio & Tardivo, Gianmarco & Chiaudani, Alessandro & Rech, Francesco & Borin, Maurizio, 2014. "Assessing reference evapotranspiration by the Hargreaves method in north-eastern Italy," Agricultural Water Management, Elsevier, vol. 140(C), pages 20-25.
    8. Kheir, Ahmed M.S. & Alrajhi, Abdullah A. & Ghoneim, Adel M. & Ali, Esmat F. & Magrashi, Ali & Zoghdan, Medhat G. & Abdelkhalik, Sedhom A.M. & Fahmy, Ahmed E. & Elnashar, Abdelrazek, 2021. "Modeling deficit irrigation-based evapotranspiration optimizes wheat yield and water productivity in arid regions," Agricultural Water Management, Elsevier, vol. 256(C).
    9. Jacovides, C.P. & Boland, J. & Asimakopoulos, D.N. & Kaltsounides, N.A., 2010. "Comparing diffuse radiation models with one predictor for partitioning incident PAR radiation into its diffuse component in the eastern Mediterranean basin," Renewable Energy, Elsevier, vol. 35(8), pages 1820-1827.
    10. Er-Raki, S. & Bouras, E. & Rodriguez, J.C. & Watts, C.J. & Lizarraga-Celaya, C. & Chehbouni, A., 2021. "Parameterization of the AquaCrop model for simulating table grapes growth and water productivity in an arid region of Mexico," Agricultural Water Management, Elsevier, vol. 245(C).
    11. Li, Huashan & Lian, Yongwang & Wang, Xianlong & Ma, Weibin & Zhao, Liang, 2011. "Solar constant values for estimating solar radiation," Energy, Elsevier, vol. 36(3), pages 1785-1789.
    12. Pirmoradian, Nader & Davatgar, Naser, 2019. "Simulating the effects of climatic fluctuations on rice irrigation water requirement using AquaCrop," Agricultural Water Management, Elsevier, vol. 213(C), pages 97-106.
    13. Almorox, J. & Benito, M. & Hontoria, C., 2005. "Estimation of monthly Angström–Prescott equation coefficients from measured daily data in Toledo, Spain," Renewable Energy, Elsevier, vol. 30(6), pages 931-936.
    14. Jabloun, M. & Sahli, A., 2008. "Evaluation of FAO-56 methodology for estimating reference evapotranspiration using limited climatic data: Application to Tunisia," Agricultural Water Management, Elsevier, vol. 95(6), pages 707-715, June.
    15. Alvar-Beltrán, Jorge & Saturnin, Coulibaly & Grégoire, Baki & Camacho, Jose Luís & Dao, Abdalla & Migraine, Jean Baptiste & Marta, Anna Dalla, 2023. "Using AquaCrop as a decision-support tool for improved irrigation management in the Sahel region," Agricultural Water Management, Elsevier, vol. 287(C).
    16. Cunha, Angélica Carvalho & Filho, Luís Roberto Almeida Gabriel & Tanaka, Adriana Aki & Goes, Bruno Cesar & Putti, Fernando Ferrari, 2021. "Influence Of The Estimated Global Solar Radiation On The Reference Evapotranspiration Obtained Through The Penman-Monteith Fao 56 Method," Agricultural Water Management, Elsevier, vol. 243(C).
    17. Jacovides, C.P. & Tymvios, F.S. & Assimakopoulos, V.D. & Kaltsounides, N.A., 2006. "Comparative study of various correlations in estimating hourly diffuse fraction of global solar radiation," Renewable Energy, Elsevier, vol. 31(15), pages 2492-2504.
    18. Sentelhas, Paulo C. & Gillespie, Terry J. & Santos, Eduardo A., 2010. "Evaluation of FAO Penman-Monteith and alternative methods for estimating reference evapotranspiration with missing data in Southern Ontario, Canada," Agricultural Water Management, Elsevier, vol. 97(5), pages 635-644, May.
    19. Sandhu, Rupinder & Irmak, Suat, 2019. "Performance of AquaCrop model in simulating maize growth, yield, and evapotranspiration under rainfed, limited and full irrigation," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    20. Yin, Yunhe & Wu, Shaohong & Zheng, Du & Yang, Qinye, 2008. "Radiation calibration of FAO56 Penman-Monteith model to estimate reference crop evapotranspiration in China," Agricultural Water Management, Elsevier, vol. 95(1), pages 77-84, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:29:y:2004:i:7:p:1109-1119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.