IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v140y2014icp20-25.html
   My bibliography  Save this article

Assessing reference evapotranspiration by the Hargreaves method in north-eastern Italy

Author

Listed:
  • Berti, Antonio
  • Tardivo, Gianmarco
  • Chiaudani, Alessandro
  • Rech, Francesco
  • Borin, Maurizio

Abstract

The Food and Agriculture Organization of the United Nations proposed the (FAO)-56 Penman–Monteith equation (FAO-56 PM) as the standard method for estimating reference evapotranspiration (ET0). This equation requires weather data which are not available in most stations or present wide gaps and/or inaccuracies in their measurement. To solve this problem, the Hargreaves equation (HARG) is recognized by FAO and is often used. This equation is based on average, minimum and maximum air temperature and extraterrestrial radiation. It tends to overestimate ET0 in humid conditions and requires a local calibration. This paper examines the possibility for calibrating the HARG equation in Veneto region (north-eastern Italy) according to different criteria. For this study, full weather data sets of daily values collected along the period 1994–2006 from 35 agro-meteorological stations located in the Veneto plain were used. Ten stations were selected for calibration of the adjusted HARG equations, in order to represent the different areas of the plain, while the other 25 were used for validation.

Suggested Citation

  • Berti, Antonio & Tardivo, Gianmarco & Chiaudani, Alessandro & Rech, Francesco & Borin, Maurizio, 2014. "Assessing reference evapotranspiration by the Hargreaves method in north-eastern Italy," Agricultural Water Management, Elsevier, vol. 140(C), pages 20-25.
  • Handle: RePEc:eee:agiwat:v:140:y:2014:i:c:p:20-25
    DOI: 10.1016/j.agwat.2014.03.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377414000870
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2014.03.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sentelhas, Paulo C. & Gillespie, Terry J. & Santos, Eduardo A., 2010. "Evaluation of FAO Penman-Monteith and alternative methods for estimating reference evapotranspiration with missing data in Southern Ontario, Canada," Agricultural Water Management, Elsevier, vol. 97(5), pages 635-644, May.
    2. Gavilan, P. & Lorite, I.J. & Tornero, S. & Berengena, J., 2006. "Regional calibration of Hargreaves equation for estimating reference ET in a semiarid environment," Agricultural Water Management, Elsevier, vol. 81(3), pages 257-281, March.
    3. Jacovides, C. P. & Kontoyiannis, H., 1995. "Statistical procedures for the evaluation of evapotranspiration computing models," Agricultural Water Management, Elsevier, vol. 27(3-4), pages 365-371, July.
    4. Jabloun, M. & Sahli, A., 2008. "Evaluation of FAO-56 methodology for estimating reference evapotranspiration using limited climatic data: Application to Tunisia," Agricultural Water Management, Elsevier, vol. 95(6), pages 707-715, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tolomio, Massimo & Borin, Maurizio, 2018. "Water table management to save water and reduce nutrient losses from agricultural fields: 6 years of experience in North-Eastern Italy," Agricultural Water Management, Elsevier, vol. 201(C), pages 1-10.
    2. Mattar, Mohamed A., 2018. "Using gene expression programming in monthly reference evapotranspiration modeling: A case study in Egypt," Agricultural Water Management, Elsevier, vol. 198(C), pages 28-38.
    3. Xiang, Keyu & Li, Yi & Horton, Robert & Feng, Hao, 2020. "Similarity and difference of potential evapotranspiration and reference crop evapotranspiration – a review," Agricultural Water Management, Elsevier, vol. 232(C).
    4. Soo-Jin Kim & Seung-Jong Bae & Min-Won Jang, 2022. "Linear Regression Machine Learning Algorithms for Estimating Reference Evapotranspiration Using Limited Climate Data," Sustainability, MDPI, vol. 14(18), pages 1-20, September.
    5. Gonçalo C. Rodrigues & Ricardo P. Braga, 2021. "Estimation of Reference Evapotranspiration during the Irrigation Season Using Nine Temperature-Based Methods in a Hot-Summer Mediterranean Climate," Agriculture, MDPI, vol. 11(2), pages 1-13, February.
    6. Gonçalo C. Rodrigues & Ricardo P. Braga, 2021. "A Simple Procedure to Estimate Reference Evapotranspiration during the Irrigation Season in a Hot-Summer Mediterranean Climate," Sustainability, MDPI, vol. 13(1), pages 1-13, January.
    7. Paredes, P. & Pereira, L.S. & Almorox, J. & Darouich, H., 2020. "Reference grass evapotranspiration with reduced data sets: Parameterization of the FAO Penman-Monteith temperature approach and the Hargeaves-Samani equation using local climatic variables," Agricultural Water Management, Elsevier, vol. 240(C).
    8. Congjian Sun & Zhenjing Zheng & Wei Chen & Yuyang Wang, 2020. "Spatial and Temporal Variations of Potential Evapotranspiration in the Loess Plateau of China During 1960–2017," Sustainability, MDPI, vol. 12(1), pages 1-15, January.
    9. Michael S. O’Donnell & Daniel J. Manier, 2022. "Spatial Estimates of Soil Moisture for Understanding Ecological Potential and Risk: A Case Study for Arid and Semi-Arid Ecosystems," Land, MDPI, vol. 11(10), pages 1-37, October.
    10. Singh Rawat, Kishan & Kumar Singh, Sudhir & Bala, Anju & Szabó, Szilárd, 2019. "Estimation of crop evapotranspiration through spatial distributed crop coefficient in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 213(C), pages 922-933.
    11. Feng, Yu & Jia, Yue & Cui, Ningbo & Zhao, Lu & Li, Chen & Gong, Daozhi, 2017. "Calibration of Hargreaves model for reference evapotranspiration estimation in Sichuan basin of southwest China," Agricultural Water Management, Elsevier, vol. 181(C), pages 1-9.
    12. Tolomio, Massimo & Borin, Maurizio, 2019. "Controlled drainage and crop production in a long-term experiment in North-Eastern Italy," Agricultural Water Management, Elsevier, vol. 222(C), pages 21-29.
    13. Paredes, Paula & Martins, Diogo S. & Pereira, Luis Santos & Cadima, Jorge & Pires, Carlos, 2018. "Accuracy of daily estimation of grass reference evapotranspiration using ERA-Interim reanalysis products with assessment of alternative bias correction schemes," Agricultural Water Management, Elsevier, vol. 210(C), pages 340-353.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paredes, Paula & Trigo, Isabel & de Bruin, Henk & Simões, Nuno & Pereira, Luis S., 2021. "Daily grass reference evapotranspiration with Meteosat Second Generation shortwave radiation and reference ET products," Agricultural Water Management, Elsevier, vol. 248(C).
    2. Cruz-Blanco, M. & Lorite, I.J. & Santos, C., 2014. "An innovative remote sensing based reference evapotranspiration method to support irrigation water management under semi-arid conditions," Agricultural Water Management, Elsevier, vol. 131(C), pages 135-145.
    3. Paredes, P. & Pereira, L.S. & Almorox, J. & Darouich, H., 2020. "Reference grass evapotranspiration with reduced data sets: Parameterization of the FAO Penman-Monteith temperature approach and the Hargeaves-Samani equation using local climatic variables," Agricultural Water Management, Elsevier, vol. 240(C).
    4. Paredes, Paula & Martins, Diogo S. & Pereira, Luis Santos & Cadima, Jorge & Pires, Carlos, 2018. "Accuracy of daily estimation of grass reference evapotranspiration using ERA-Interim reanalysis products with assessment of alternative bias correction schemes," Agricultural Water Management, Elsevier, vol. 210(C), pages 340-353.
    5. Zhang, Zixiong & Gong, Yicheng & Wang, Zhongjing, 2018. "Accessible remote sensing data based reference evapotranspiration estimation modelling," Agricultural Water Management, Elsevier, vol. 210(C), pages 59-69.
    6. Cunha, Angélica Carvalho & Filho, Luís Roberto Almeida Gabriel & Tanaka, Adriana Aki & Goes, Bruno Cesar & Putti, Fernando Ferrari, 2021. "Influence Of The Estimated Global Solar Radiation On The Reference Evapotranspiration Obtained Through The Penman-Monteith Fao 56 Method," Agricultural Water Management, Elsevier, vol. 243(C).
    7. Sentelhas, Paulo C. & Gillespie, Terry J. & Santos, Eduardo A., 2010. "Evaluation of FAO Penman-Monteith and alternative methods for estimating reference evapotranspiration with missing data in Southern Ontario, Canada," Agricultural Water Management, Elsevier, vol. 97(5), pages 635-644, May.
    8. Aouissi, Jalel & Benabdallah, Sihem & Lili Chabaâne, Zohra & Cudennec, Christophe, 2016. "Evaluation of potential evapotranspiration assessment methods for hydrological modelling with SWAT—Application in data-scarce rural Tunisia," Agricultural Water Management, Elsevier, vol. 174(C), pages 39-51.
    9. Matin Ahooghalandari & Mehdi Khiadani & Mina Esmi Jahromi, 2016. "Developing Equations for Estimating Reference Evapotranspiration in Australia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(11), pages 3815-3828, September.
    10. Valle Júnior, Luiz C.G. & Ventura, Thiago M. & Gomes, Raphael S.R. & de S. Nogueira, José & de A. Lobo, Francisco & Vourlitis, George L. & Rodrigues, Thiago R., 2020. "Comparative assessment of modelled and empirical reference evapotranspiration methods for a brazilian savanna," Agricultural Water Management, Elsevier, vol. 232(C).
    11. Martí, Pau & González-Altozano, Pablo & López-Urrea, Ramón & Mancha, Luis A. & Shiri, Jalal, 2015. "Modeling reference evapotranspiration with calculated targets. Assessment and implications," Agricultural Water Management, Elsevier, vol. 149(C), pages 81-90.
    12. de Oliveira, Renan G. & Valle Júnior, Luiz Claudio G. & da Silva, Jonh Billy & Espíndola, Duani A.L.F. & Lopes, Rute D. & Nogueira, José S. & Curado, Leone F.A. & Rodrigues, Thiago R., 2021. "Temporal trend changes in reference evapotranspiration contrasting different land uses in southern Amazon basin," Agricultural Water Management, Elsevier, vol. 250(C).
    13. Laishram Kanta Singh & Madan K. Jha & Mohita Pandey, 2018. "Framework for Standardizing Less Data-Intensive Methods of Reference Evapotranspiration Estimation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(13), pages 4159-4175, October.
    14. Paweł Bogawski & Ewa Bednorz, 2014. "Comparison and Validation of Selected Evapotranspiration Models for Conditions in Poland (Central Europe)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(14), pages 5021-5038, November.
    15. Singh Rawat, Kishan & Kumar Singh, Sudhir & Bala, Anju & Szabó, Szilárd, 2019. "Estimation of crop evapotranspiration through spatial distributed crop coefficient in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 213(C), pages 922-933.
    16. Vásquez, Cristina & Célleri, Rolando & Córdova, Mario & Carrillo-Rojas, Galo, 2022. "Improving reference evapotranspiration (ETo) calculation under limited data conditions in the high Tropical Andes," Agricultural Water Management, Elsevier, vol. 262(C).
    17. Jabloun, M. & Sahli, A., 2008. "Evaluation of FAO-56 methodology for estimating reference evapotranspiration using limited climatic data: Application to Tunisia," Agricultural Water Management, Elsevier, vol. 95(6), pages 707-715, June.
    18. Alvar-Beltrán, Jorge & Saturnin, Coulibaly & Grégoire, Baki & Camacho, Jose Luís & Dao, Abdalla & Migraine, Jean Baptiste & Marta, Anna Dalla, 2023. "Using AquaCrop as a decision-support tool for improved irrigation management in the Sahel region," Agricultural Water Management, Elsevier, vol. 287(C).
    19. Gavilán, P. & Castillo-Llanque, F., 2009. "Estimating reference evapotranspiration with atmometers in a semiarid environment," Agricultural Water Management, Elsevier, vol. 96(3), pages 465-472, March.
    20. Gonçalo C. Rodrigues & Ricardo P. Braga, 2021. "Estimation of Reference Evapotranspiration during the Irrigation Season Using Nine Temperature-Based Methods in a Hot-Summer Mediterranean Climate," Agriculture, MDPI, vol. 11(2), pages 1-13, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:140:y:2014:i:c:p:20-25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.