IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v216y2023ics096014812300962x.html
   My bibliography  Save this article

Thermal performance analysis of flat surface solar receiver with square tubular fins for a parabolic dish collector

Author

Listed:
  • Vengadesan, Elumalai
  • Gurusamy, Pathinettampadian
  • Senthil, Ramalingam

Abstract

A parabolic dish collector (PDC) with a flat surface solar receiver performs poorly due to more heat loss, although reaching higher temperatures. Hence, the current study introduces a novel flat surface receiver finned with staggered square cross-sectioned tubular fins made of cost-effective materials that improve the effective heat transfer area and water flow structure. A real-time investigation is carried out at different water flow rates (0.025 kg/s, 0.033 kg/s, and 0.042 kg/s). Maximum temperature difference of 33 °C, 28 °C, and 23 °C were measured when water flows at 0.025 kg/s, 0.033 kg/s, and 0.042 kg/s, respectively. Water boiling began earlier at lower mass flow rates and was delayed as the flow rate increased. The average heat transfer coefficient and receiver power are 242 W/m2.K and 2.7 kW, respectively, at 0.042 kg/s. Peak thermal and exergy efficiencies of 71% and 8.11%, respectively, are obtained, which is higher than the efficiency of existing flat surface receivers. Furthermore, the cost per kWh of useful energy is 46.2% less than the cost of electricity produced by the coal power plant. Therefore, the current flat surface receiver might enhance the PDC's thermal performance more effectively than previous receivers with minimum energy cost.

Suggested Citation

  • Vengadesan, Elumalai & Gurusamy, Pathinettampadian & Senthil, Ramalingam, 2023. "Thermal performance analysis of flat surface solar receiver with square tubular fins for a parabolic dish collector," Renewable Energy, Elsevier, vol. 216(C).
  • Handle: RePEc:eee:renene:v:216:y:2023:i:c:s096014812300962x
    DOI: 10.1016/j.renene.2023.119048
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812300962X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thirunavukkarasu, V. & Cheralathan, M., 2020. "An experimental study on energy and exergy performance of a spiral tube receiver for solar parabolic dish concentrator," Energy, Elsevier, vol. 192(C).
    2. Himanshu Agrawal & Avadhesh Yadav, 2021. "A Scheffler solar concentrator heat transfer model used in forced-circulation ice melting system at high-altitude regions," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(2), pages 1623-1645, February.
    3. Onokwai, Anthony O. & Okonkwo, Ugochukwu C. & Osueke, Christian O. & Okafor, Christian E. & Olayanju, Tajudeen M.A. & Dahunsi, Samuel, O., 2019. "Design, modelling, energy and exergy analysis of a parabolic cooker," Renewable Energy, Elsevier, vol. 142(C), pages 497-510.
    4. Gong, Jing-hu & Wang, Jun & Lund, Peter D. & Zhao, Dan-dan & Xu, Jing-wen & Jin, Yi-hao, 2021. "Comparative study of heat transfer enhancement using different fins in semi-circular absorber tube for large-aperture trough solar concentrator," Renewable Energy, Elsevier, vol. 169(C), pages 1229-1241.
    5. Karimi, Reza & Gheinani, Touraj Tavakoli & Madadi Avargani, Vahid, 2018. "A detailed mathematical model for thermal performance analysis of a cylindrical cavity receiver in a solar parabolic dish collector system," Renewable Energy, Elsevier, vol. 125(C), pages 768-782.
    6. Hassan, Atazaz & Quanfang, Chen & Abbas, Sajid & Lu, Wu & Youming, Luo, 2021. "An experimental investigation on thermal and optical analysis of cylindrical and conical cavity copper tube receivers design for solar dish concentrator," Renewable Energy, Elsevier, vol. 179(C), pages 1849-1864.
    7. Reddy, K.S. & Natarajan, Sendhil Kumar & Veershetty, G., 2015. "Experimental performance investigation of modified cavity receiver with fuzzy focal solar dish concentrator," Renewable Energy, Elsevier, vol. 74(C), pages 148-157.
    8. Rodríguez-Sánchez, M.R. & Laporte-Azcué, M. & Montoya, A. & Hernández-Jiménez, F., 2022. "Non-conventional tube shapes for lifetime extend of solar external receivers," Renewable Energy, Elsevier, vol. 186(C), pages 535-546.
    9. Kasaeian, Alibakhsh & Kouravand, Amir & Vaziri Rad, Mohammad Amin & Maniee, Siavash & Pourfayaz, Fathollah, 2021. "Cavity receivers in solar dish collectors: A geometric overview," Renewable Energy, Elsevier, vol. 169(C), pages 53-79.
    10. Du, Shen & Wang, Zexiao & Shen, Sheng, 2022. "Thermal and structural evaluation of composite solar receiver tubes for Gen3 concentrated solar power systems," Renewable Energy, Elsevier, vol. 189(C), pages 117-128.
    11. Soltani, Sara & Bonyadi, Mohammad & Madadi Avargani, Vahid, 2019. "A novel optical-thermal modeling of a parabolic dish collector with a helically baffled cylindrical cavity receiver," Energy, Elsevier, vol. 168(C), pages 88-98.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hassan, Atazaz & Quanfang, Chen & Abbas, Sajid & Lu, Wu & Youming, Luo, 2021. "An experimental investigation on thermal and optical analysis of cylindrical and conical cavity copper tube receivers design for solar dish concentrator," Renewable Energy, Elsevier, vol. 179(C), pages 1849-1864.
    2. Kasaeian, Alibakhsh & Kouravand, Amir & Vaziri Rad, Mohammad Amin & Maniee, Siavash & Pourfayaz, Fathollah, 2021. "Cavity receivers in solar dish collectors: A geometric overview," Renewable Energy, Elsevier, vol. 169(C), pages 53-79.
    3. Madadi Avargani, Vahid & Norton, Brian & Rahimi, Amir, 2021. "An open-aperture partially-evacuated receiver for more uniform reflected solar flux in circular-trough reflectors: Comparative performance in air heating applications," Renewable Energy, Elsevier, vol. 176(C), pages 11-24.
    4. Wang, Ding & Chen, Yuxuan & Xiao, Hu & Zhang, Yanping, 2022. "Effects of geometric and operating parameters on thermal performance of conical cavity receivers using supercritical CO2 as heat transfer fluid," Renewable Energy, Elsevier, vol. 185(C), pages 804-819.
    5. Chen, Yuxuan & Wang, Ding & Zou, Chongzhe & Gao, Wei & Zhang, Yanping, 2022. "Thermal performance and thermal stress analysis of a supercritical CO2 solar conical receiver under different flow directions," Energy, Elsevier, vol. 246(C).
    6. Madadi Avargani, Vahid & Zendehboudi, Sohrab & Zamani, Mohammad Amin, 2023. "Performance evaluation of various nano heat transfer fluids in charging/discharging processes of an indirect solar air heating system," Energy, Elsevier, vol. 274(C).
    7. Erany D. G. Constantino & Senhorinha F. C. F. Teixeira & José C. F. Teixeira & Flavia V. Barbosa, 2022. "Innovative Solar Concentration Systems and Its Potential Application in Angola," Energies, MDPI, vol. 15(19), pages 1-28, September.
    8. Danish, Syed Noman & Al-Ansary, Hany & El-Leathy, Abdelrahman & Ba-Abbad, Mazen & Khan, Salah Ud-Din & Rizvi, Arslan & Orfi, Jamel & Al-Nakhli, Ahmed, 2022. "Experimental and techno-economic analysis of two innovative solar thermal receiver designs for a point focus solar Fresnel collector," Energy, Elsevier, vol. 261(PA).
    9. Abbas, Sajid & Yuan, Yanping & Zhou, Jinzhi & Hassan, Atazaz & Yu, Min & Yasheng, Ji, 2022. "Experimental and analytical analysis of the impact of different base plate materials and design parameters on the performance of the photovoltaic/thermal system," Renewable Energy, Elsevier, vol. 187(C), pages 522-536.
    10. Al-Nimr, Moh’d A. & Al-Ammari, Wahib A., 2020. "A novel hybrid and interactive solar system consists of Stirling engine ̸vacuum evaporator ̸thermoelectric cooler for electricity generation and water distillation," Renewable Energy, Elsevier, vol. 153(C), pages 1053-1066.
    11. Loni, R. & Kasaeian, A.B. & Askari Asli-Ardeh, E. & Ghobadian, B., 2016. "Optimizing the efficiency of a solar receiver with tubular cylindrical cavity for a solar-powered organic Rankine cycle," Energy, Elsevier, vol. 112(C), pages 1259-1272.
    12. Ju, Xing & Abd El-Samie, Mostafa M. & Xu, Chao & Yu, Hangyu & Pan, Xinyu & Yang, Yongping, 2020. "A fully coupled numerical simulation of a hybrid concentrated photovoltaic/thermal system that employs a therminol VP-1 based nanofluid as a spectral beam filter," Applied Energy, Elsevier, vol. 264(C).
    13. Li, Xueling & Li, Renfu & Chang, Huawei & Zeng, Lijian & Xi, Zhaojun & Li, Yichao, 2022. "Numerical simulation of a cavity receiver enhanced with transparent aerogel for parabolic dish solar power generation," Energy, Elsevier, vol. 246(C).
    14. Wang, Wujun & Fan, Liwu & Laumert, Björn, 2021. "A theoretical heat transfer analysis of different indirectly-irradiated receiver designs for high-temperature concentrating solar power applications," Renewable Energy, Elsevier, vol. 163(C), pages 1983-1993.
    15. Khatri, Rahul & Goyal, Rahul & Sharma, Ravi Kumar, 2021. "Advances in the developments of solar cooker for sustainable development: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    16. Ji-Qiang Li & Jeong-Tae Kwon & Seon-Jun Jang, 2020. "The Power and Efficiency Analyses of the Cylindrical Cavity Receiver on the Solar Stirling Engine," Energies, MDPI, vol. 13(21), pages 1-17, November.
    17. Jing-hu, Gong & Yong, Li & Jun, Wang & Lund, Peter, 2023. "Performance optimization of larger-aperture parabolic trough concentrator solar power station using multi-stage heating technology," Energy, Elsevier, vol. 268(C).
    18. Yang, Liu & Du, Kai, 2020. "Thermo-economic analysis of a novel parabolic trough solar collector equipped with preheating system and canopy," Energy, Elsevier, vol. 211(C).
    19. Wang, Wen-Qi & Li, Ming-Jia & Cheng, Ze-Dong & Li, Dong & Liu, Zhan-Bin, 2021. "Coupled optical-thermal-stress characteristics of a multi-tube external molten salt receiver for the next generation concentrating solar power," Energy, Elsevier, vol. 233(C).
    20. Hassan, Atazaz & Abbas, Sajid & Yousuf, Saima & Abbas, Fakhar & Amin, N.M. & Ali, Shujaat & Shahid Mastoi, Muhammad, 2023. "An experimental and numerical study on the impact of various parameters in improving the heat transfer performance characteristics of a water based photovoltaic thermal system," Renewable Energy, Elsevier, vol. 202(C), pages 499-512.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:216:y:2023:i:c:s096014812300962x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.