IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v200y2022icp10-23.html
   My bibliography  Save this article

Thermo-ecological analysis - The comparison of collector and PV to PV/T system

Author

Listed:
  • Szostok, Agnieszka
  • Stanek, Wojciech

Abstract

The use of solar radiation energy is one of the important elements to achieve energy transformation. This potential can be utilized by generating electricity with PV modules or heat from collectors. It is also possible to combine these elements into one system and more efficient use of solar radiation, as is the case with the Photovoltaic thermal collectors (PV/T system), which is considered in the article below. The amounts of produced electricity and heat are compared and the energy efficiency of electricity production by PV or PV/T. Local energy analysis from the point of view of resource efficiency, however, becomes insufficient, because it ignores the issue of the quality of individual energy carriers, therefore also in the rest of the article presents an exergo-ecological analysis using the TEC concept (thermo-ecological cost). It has been demonstrated that the TEC for generated carrier (electricity/heat) produced from solar radiation is lower for combined systems and depends on a few factors: the type of generated carrier and implementation of division of allocation of fuel between heat and electricity (for combined systems). Local analysis leads to conclusions other than the global one, as demonstrated by the results presented in the article.

Suggested Citation

  • Szostok, Agnieszka & Stanek, Wojciech, 2022. "Thermo-ecological analysis - The comparison of collector and PV to PV/T system," Renewable Energy, Elsevier, vol. 200(C), pages 10-23.
  • Handle: RePEc:eee:renene:v:200:y:2022:i:c:p:10-23
    DOI: 10.1016/j.renene.2022.09.070
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812201429X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.09.070?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Osma-Pinto, German & Ordóñez-Plata, Gabriel, 2020. "Dynamic thermal modelling for the prediction of the operating temperature of a PV panel with an integrated cooling system," Renewable Energy, Elsevier, vol. 152(C), pages 1041-1054.
    2. ., 2021. "Rise of the modern electric vehicle," Chapters, in: The Global Rise of the Modern Plug-In Electric Vehicle, chapter 1, pages 1-33, Edward Elgar Publishing.
    3. Stanek, Wojciech & Gazda, Wiesław & Kostowski, Wojciech, 2015. "Thermo-ecological assessment of CCHP (combined cold-heat-and-power) plant supported with renewable energy," Energy, Elsevier, vol. 92(P3), pages 279-289.
    4. Gagliano, Antonio & Tina, Giuseppe M. & Nocera, Francesco & Grasso, Alfio Dario & Aneli, Stefano, 2019. "Description and performance analysis of a flexible photovoltaic/thermal (PV/T) solar system," Renewable Energy, Elsevier, vol. 137(C), pages 144-156.
    5. Long He & Guangrui Ma & Wei Qi & Xin Wang, 2021. "Charging an Electric Vehicle-Sharing Fleet," Manufacturing & Service Operations Management, INFORMS, vol. 23(2), pages 471-487, March.
    6. Rong Xia & Dong Tian & Shyam Kattel & Bjorn Hasa & Haeun Shin & Xinbin Ma & Jingguang G. Chen & Feng Jiao, 2021. "Electrochemical reduction of acetonitrile to ethylamine," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    7. J. C. Teo & Rodney H. G. Tan & V. H. Mok & Vigna K. Ramachandaramurthy & ChiaKwang Tan, 2018. "Impact of Partial Shading on the P-V Characteristics and the Maximum Power of a Photovoltaic String," Energies, MDPI, vol. 11(7), pages 1-22, July.
    8. Cornelis J. van Diepen & Tzu-Kan Hsiao & Uditendu Mukhopadhyay & Christian Reichl & Werner Wegscheider & Lieven M. K. Vandersypen, 2021. "Electron cascade for distant spin readout," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    9. Gómez-Navarro, Tomás & Brazzini, Tommaso & Alfonso-Solar, David & Vargas-Salgado, Carlos, 2021. "Analysis of the potential for PV rooftop prosumer production: Technical, economic and environmental assessment for the city of Valencia (Spain)," Renewable Energy, Elsevier, vol. 174(C), pages 372-381.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhaohua Wang & Bin Lu & Bo Wang & Yueming (Lucy) Qiu & Han Shi & Bin Zhang & Jingyun Li & Hao Li & Wenhui Zhao, 2023. "Incentive based emergency demand response effectively reduces peak load during heatwave without harm to vulnerable groups," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. Yun, Lingxiang & Xiao, Minkun & Li, Lin, 2022. "Vehicle-to-manufacturing (V2M) system: A novel approach to improve energy demand flexibility for demand response towards sustainable manufacturing," Applied Energy, Elsevier, vol. 323(C).
    3. Keck, Felix & Jütte, Silke & Lenzen, Manfred & Li, Mengyu, 2022. "Assessment of two optimisation methods for renewable energy capacity expansion planning," Applied Energy, Elsevier, vol. 306(PA).
    4. Ahn, Hyeunguk & Miller, William & Sheaffer, Paul & Tutterow, Vestal & Rapp, Vi, 2021. "Opportunities for installed combined heat and power (CHP) to increase grid flexibility in the U.S," Energy Policy, Elsevier, vol. 157(C).
    5. Manzolli, Jônatas Augusto & Trovão, João Pedro F. & Henggeler Antunes, Carlos, 2022. "Electric bus coordinated charging strategy considering V2G and battery degradation," Energy, Elsevier, vol. 254(PA).
    6. Stanek, Wojciech & Czarnowska, Lucyna, 2018. "Thermo-ecological cost – Szargut's proposal on exergy and ecology connection," Energy, Elsevier, vol. 165(PB), pages 1050-1059.
    7. Bevilacqua, Piero & Bruno, Roberto & Rollo, Antonino & Ferraro, Vittorio, 2022. "A novel thermal model for PV panels with back surface spray cooling," Energy, Elsevier, vol. 255(C).
    8. Khani, M.S. & Baneshi, M. & Eslami, M., 2019. "Bi-objective optimization of photovoltaic-thermal (PV/T) solar collectors according to various weather conditions using genetic algorithm: A numerical modeling," Energy, Elsevier, vol. 189(C).
    9. Xu, Xiao Xiao & Liu, Chao & Fu, Xiang & Gao, Hong & Li, Yourong, 2015. "Energy and exergy analyses of a modified combined cooling, heating, and power system using supercritical CO2," Energy, Elsevier, vol. 86(C), pages 414-422.
    10. Yan, Pengyu & Yu, Kaize & Chao, Xiuli & Chen, Zhibin, 2023. "An online reinforcement learning approach to charging and order-dispatching optimization for an e-hailing electric vehicle fleet," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1218-1233.
    11. Formolli, M. & Kleiven, T. & Lobaccaro, G., 2023. "Assessing solar energy accessibility at high latitudes: A systematic review of urban spatial domains, metrics, and parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    12. Hassan M. H. Farh & Mohd F. Othman & Ali M. Eltamaly & M. S. Al-Saud, 2018. "Maximum Power Extraction from a Partially Shaded PV System Using an Interleaved Boost Converter," Energies, MDPI, vol. 11(10), pages 1-18, September.
    13. Weng-Hooi Tan & Junita Mohamad-Saleh, 2023. "Critical Review on Interrelationship of Electro-Devices in PV Solar Systems with Their Evolution and Future Prospects for MPPT Applications," Energies, MDPI, vol. 16(2), pages 1-37, January.
    14. Kutlu, Elif Ceren & Durusoy, Beyza & Ozden, Talat & Akinoglu, Bulent G., 2022. "Technical potential of rooftop solar photovoltaic for Ankara," Renewable Energy, Elsevier, vol. 185(C), pages 779-789.
    15. Stanek, Wojciech & Simla, Tomasz & Gazda, Wiesław, 2019. "Exergetic and thermo-ecological assessment of heat pump supported by electricity from renewable sources," Renewable Energy, Elsevier, vol. 131(C), pages 404-412.
    16. D'Adamo, Idiano & Mammetti, Marco & Ottaviani, Dario & Ozturk, Ilhan, 2023. "Photovoltaic systems and sustainable communities: New social models for ecological transition. The impact of incentive policies in profitability analyses," Renewable Energy, Elsevier, vol. 202(C), pages 1291-1304.
    17. Vipin K Sharma, 2023. "Memory, Media, and Modernity in Tennessee Williams’ The Glass Menagerie: A Twenty-first Century Perspective," Studies in Media and Communication, Redfame publishing, vol. 11(6), pages 181-187, September.
    18. Usón, Sergio & Kostowski, Wojciech J. & Stanek, Wojciech & Gazda, Wiesław, 2015. "Thermoecological cost of electricity, heat and cold generated in a trigeneration module fuelled with selected fossil and renewable fuels," Energy, Elsevier, vol. 92(P3), pages 308-319.
    19. Wu, Haixia & Ge, Yan & Li, Jianping, 2023. "Uncertainty, time preference and households’ adoption of rooftop photovoltaic technology," Energy, Elsevier, vol. 276(C).
    20. Irene Martínez Reverte & Tomás Gómez-Navarro & Carlos Sánchez-Díaz & Carla Montagud Montalvá, 2022. "Evaluation of Alternatives for Energy Supply from Fuel Cells in Compact Cities in the Mediterranean Climate; Case Study: City of Valencia," Energies, MDPI, vol. 15(12), pages 1-30, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:200:y:2022:i:c:p:10-23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.