IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v195y2022icp488-496.html
   My bibliography  Save this article

Is anaerobic co-digestion the missing link to integrate sugarcane biorefinery?

Author

Listed:
  • Herrera Adarme, Oscar Fernando
  • Baêta, Bruno Eduardo Lobo
  • Alves Gurgel, Leandro Vinícius
  • de Ávila Rodrigues, Fabio
  • Aquino, Sérgio Francisco de

Abstract

This study evaluated the potential of energy generation from anaerobic co-digestion (AcD) of vinasse and hemicelluloses hydrolysate within the context of an integrated 1G-2G sugarcane biorefinery as a mean to ensure its technical, economic and environmental feasibility. Environmental impact indexes for 2G ethanol and biogas production process, such as carbon footprint, which varied from 12.3 to 50.02 g CO2/MJ and reduction of greenhouse gas (GHG) emissions (from 42.7 to 85.9%), were obtained in all scenarios. Economic indicators showed the unviability of 1G-2G sugarcane mill integration adopting AcD of wastes, considering technologies for 2G ethanol production in view of their high capital and operational costs (pretreatment). However, by fixing the experimental methane yield at 0.245 Nm3 kg COD−1r which has been obtained for two-stage anaerobic systems and by considering the use of 50% of bagasse surplus for biogas production, it was possible to achieve internal rate of return (IRR), return on investment (ROI) and payback period of 21.8%, 59.50% and 10.55 years respectively. Moreover, when experimental methane yield is increased in 10% in such scenario, it was possible to achieve internal rate of return (IRR), return on investment (ROI) and payback period of 26%,89.05% and 5.36 years, respectively.

Suggested Citation

  • Herrera Adarme, Oscar Fernando & Baêta, Bruno Eduardo Lobo & Alves Gurgel, Leandro Vinícius & de Ávila Rodrigues, Fabio & Aquino, Sérgio Francisco de, 2022. "Is anaerobic co-digestion the missing link to integrate sugarcane biorefinery?," Renewable Energy, Elsevier, vol. 195(C), pages 488-496.
  • Handle: RePEc:eee:renene:v:195:y:2022:i:c:p:488-496
    DOI: 10.1016/j.renene.2022.06.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122008497
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.06.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Klein, Bruno Colling & Chagas, Mateus Ferreira & Watanabe, Marcos Djun Barbosa & Bonomi, Antonio & Maciel Filho, Rubens, 2019. "Low carbon biofuels and the New Brazilian National Biofuel Policy (RenovaBio): A case study for sugarcane mills and integrated sugarcane-microalgae biorefineries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    2. Rajendran, Karthik & Mahapatra, Durgamadhab & Venkatraman, Arun Venkatesh & Muthuswamy, Shanmugaprakash & Pugazhendhi, Arivalagan, 2020. "Advancing anaerobic digestion through two-stage processes: Current developments and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    3. Fuess, L.T. & Cruz, R.B.C.M. & Zaiat, M. & Nascimento, C.A.O., 2021. "Diversifying the portfolio of sugarcane biorefineries: Anaerobic digestion as the core process for enhanced resource recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    4. Nunes Ferraz Junior, Antônio Djalma & Etchebehere, Claudia & Perecin, Danilo & Teixeira, Suani & Woods, Jeremy, 2022. "Advancing anaerobic digestion of sugarcane vinasse: Current development, struggles and future trends on production and end-uses of biogas in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    5. Moraes, Bruna S. & Petersen, Søren O. & Zaiat, Marcelo & Sommer, Sven G. & Triolo, Jin Mi, 2017. "Reduction in greenhouse gas emissions from vinasse through anaerobic digestion," Applied Energy, Elsevier, vol. 189(C), pages 21-30.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Canabarro, N.I. & Silva-Ortiz, P. & Nogueira, L.A.H. & Cantarella, H. & Maciel-Filho, R. & Souza, G.M., 2023. "Sustainability assessment of ethanol and biodiesel production in Argentina, Brazil, Colombia, and Guatemala," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    2. Chowdhury, M.M.I. & Nakhla, G. & Zhu, J., 2017. "Ultrasonically enhanced anaerobic digestion of thickened waste activated sludge using fluidized bed reactors," Applied Energy, Elsevier, vol. 204(C), pages 807-818.
    3. Siqueira, J.C. & Braga, M.Q. & Ázara, M.S. & Garcia, K.J. & Alencar, S.N.M. & Ramos, T.S. & Siniscalchi, L.A.B. & Assemany, P.P. & Ensinas, A.V., 2022. "Recovery of vinasse with combined microalgae cultivation in a conceptual energy-efficient industrial plant: Analysis of related process considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    4. Bhatnagar, N. & Ryan, D. & Murphy, R. & Enright, A.M., 2022. "A comprehensive review of green policy, anaerobic digestion of animal manure and chicken litter feedstock potential – Global and Irish perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    5. Nocera Alves Junior, Paulo & Costa Melo, Isotilia & de Moraes Santos, Rodrigo & da Rocha, Fernando Vinícius & Caixeta-Filho, José Vicente, 2022. "How did COVID-19 affect green-fuel supply chain? - A performance analysis of Brazilian ethanol sector," Research in Transportation Economics, Elsevier, vol. 93(C).
    6. Nilsa Duarte da Silva Lima & Irenilza de Alencar Nääs & João Gilberto Mendes dos Reis & Raquel Baracat Tosi Rodrigues da Silva, 2020. "Classifying the Level of Energy-Environmental Efficiency Rating of Brazilian Ethanol," Energies, MDPI, vol. 13(8), pages 1-16, April.
    7. Grzegorz Piechota & Bartłomiej Igliński, 2021. "Biomethane in Poland—Current Status, Potential, Perspective and Development," Energies, MDPI, vol. 14(6), pages 1-32, March.
    8. Collins, B.A. & Birzer, C.H. & Harris, P.W. & Kidd, S.P. & McCabe, B.K. & Medwell, P.R., 2023. "Two-phase anaerobic digestion in leach bed reactors coupled to anaerobic filters: A review and the potential of biochar filters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    9. Guimarães de Oliveira, Maurício & Marques Mourão, José Marcos & Marques de Oliveira, Ana Katherinne & Bezerra dos Santos, André & Lopes Pereira, Erlon, 2021. "Microaerophilic treatment enhanced organic matter removal and methane production rates during swine wastewater treatment: A long-term engineering evaluation," Renewable Energy, Elsevier, vol. 180(C), pages 691-699.
    10. Fuess, L.T. & Cruz, R.B.C.M. & Zaiat, M. & Nascimento, C.A.O., 2021. "Diversifying the portfolio of sugarcane biorefineries: Anaerobic digestion as the core process for enhanced resource recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    11. Yang, Min & Watson, Jamison & Wang, Zixin & Si, Buchun & Jiang, Weizhong & Zhou, Bo & Zhang, Yuanhui, 2022. "Understanding and design of two-stage fermentation: A perspective of interspecies electron transfer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    12. Silva Neto, Jorge Vinicius & Gallo, Waldyr L.R., 2021. "Potential impacts of vinasse biogas replacing fossil oil for power generation, natural gas, and increasing sugarcane energy in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    13. Mahmudul, H.M. & Rasul, M.G. & Akbar, D. & Narayanan, R. & Mofijur, M., 2022. "Food waste as a source of sustainable energy: Technical, economical, environmental and regulatory feasibility analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    14. Vandenberghe, L.P.S. & Valladares-Diestra, K.K. & Bittencourt, G.A. & Zevallos Torres, L.A. & Vieira, S. & Karp, S.G. & Sydney, E.B. & de Carvalho, J.C. & Thomaz Soccol, V. & Soccol, C.R., 2022. "Beyond sugar and ethanol: The future of sugarcane biorefineries in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    15. Comineti, Camila da Silva Serra & Pretel, Ariel Fernandes & Schlindwein, Madalena Maria, 2023. "The type of development promoted by Brazilian National Biofuels Policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    16. Zamri, M.F.M.A. & Hasmady, Saiful & Akhiar, Afifi & Ideris, Fazril & Shamsuddin, A.H. & Mofijur, M. & Fattah, I. M. Rizwanul & Mahlia, T.M.I., 2021. "A comprehensive review on anaerobic digestion of organic fraction of municipal solid waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    17. Antônio Rufino Júnior, Carlos & Sanseverino, Eleonora Riva & Gallo, Pierluigi & Koch, Daniel & Schweiger, Hans-Georg & Zanin, Hudson, 2022. "Blockchain review for battery supply chain monitoring and battery trading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    18. Tsigkou, Konstantina & Sventzouri, Eirini & Zafiri, Constantina & Kornaros, Michael, 2023. "Digestate recirculation rate optimization for the enhancement of hydrogen production: The case of disposable nappies and fruit/vegetable waste valorization in a mesophilic two-stage anaerobic digestio," Renewable Energy, Elsevier, vol. 215(C).
    19. Chen, Wei-Hsin & Lin, Shih-Cheng, 2018. "Biogas partial oxidation in a heat recirculation reactor for syngas production and CO2 utilization," Applied Energy, Elsevier, vol. 217(C), pages 113-125.
    20. Goes, George Vasconcelos & Schmitz Gonçalves, Daniel Neves & de Almeida D’Agosto, Márcio & de Mello Bandeira, Renata Albergaria & Grottera, Carolina, 2020. "Transport-energy-environment modeling and investment requirements from Brazilian commitments," Renewable Energy, Elsevier, vol. 157(C), pages 303-311.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:195:y:2022:i:c:p:488-496. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.