IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v188y2022icp96-113.html
   My bibliography  Save this article

Investigation on dynamics of rotating wind turbine blade using transferred differential transformation method

Author

Listed:
  • Zhou, J.W.
  • Zhang, W.
  • Jiang, X.
  • Zhai, E.D.

Abstract

The wind turbine blade is commonly treated as a non-uniform beam because of its high aspect ratio. The bend-twist coupled vibrations of the wind turbine blade occur when there exist the misalignments among the shear center, neutral axis and pressure center in the blade cross-section. The differential governing equations of motion for the rotating wind turbine blade are derived by Hamilton principle and solved by the transferred differential transformation method (TDTM). Due to the rotations, three terms, namely the tension, centrifugal and gyroscopic forces, are distinctively summarized and taken into account in the proposed model. The natural frequencies obtained by the TDTM are compared with both experimental and numerical simulations to validate the effectiveness of the proposed solving method. The influences of the tension, centrifugal and gyroscopic forces on the natural frequencies are investigated for the wind turbine blade. The mode veering phenomenon is found and explained by using the complex mode decomposition theory. The phase differences among the flap-wise, edge-wise and torsional motions are also explored by observing the whirling orbits at the blade tip.

Suggested Citation

  • Zhou, J.W. & Zhang, W. & Jiang, X. & Zhai, E.D., 2022. "Investigation on dynamics of rotating wind turbine blade using transferred differential transformation method," Renewable Energy, Elsevier, vol. 188(C), pages 96-113.
  • Handle: RePEc:eee:renene:v:188:y:2022:i:c:p:96-113
    DOI: 10.1016/j.renene.2022.02.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122001744
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.02.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schubel, P.J. & Crossley, R.J. & Boateng, E.K.G. & Hutchinson, J.R., 2013. "Review of structural health and cure monitoring techniques for large wind turbine blades," Renewable Energy, Elsevier, vol. 51(C), pages 113-123.
    2. Nouri, Reza & Vasel-Be-Hagh, Ahmad & Archer, Cristina L., 2020. "The Coriolis force and the direction of rotation of the blades significantly affect the wake of wind turbines," Applied Energy, Elsevier, vol. 277(C).
    3. Zuo, Haoran & Bi, Kaiming & Hao, Hong, 2020. "A state-of-the-art review on the vibration mitigation of wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    4. Fu, Shifeng & Jin, Yaqing & Zheng, Yuan & Chamorro, Leonardo P., 2019. "Wake and power fluctuations of a model wind turbine subjected to pitch and roll oscillations," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    5. Liu, Xiong & Lu, Cheng & Liang, Shi & Godbole, Ajit & Chen, Yan, 2017. "Vibration-induced aerodynamic loads on large horizontal axis wind turbine blades," Applied Energy, Elsevier, vol. 185(P2), pages 1109-1119.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Niu, Yan & Wu, Meiqi & Yao, Minghui & Wu, Qiliang, 2022. "Dynamic instability and internal resonance of rotating pretwisted composite airfoil blades," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beganovic, Nejra & Söffker, Dirk, 2016. "Structural health management utilization for lifetime prognosis and advanced control strategy deployment of wind turbines: An overview and outlook concerning actual methods, tools, and obtained result," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 68-83.
    2. Javier Serrano González & Manuel Burgos Payán & Jesús Manuel Riquelme Santos & Ángel Gaspar González Rodríguez, 2021. "Optimal Micro-Siting of Weathervaning Floating Wind Turbines," Energies, MDPI, vol. 14(4), pages 1-19, February.
    3. Truong, Hoai Vu Anh & Dang, Tri Dung & Vo, Cong Phat & Ahn, Kyoung Kwan, 2022. "Active control strategies for system enhancement and load mitigation of floating offshore wind turbines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    4. Rezaeiha, Abdolrahim & Micallef, Daniel, 2021. "Wake interactions of two tandem floating offshore wind turbines: CFD analysis using actuator disc model," Renewable Energy, Elsevier, vol. 179(C), pages 859-876.
    5. Zhang, Lijun & Li, Ye & Xu, Wenhao & Gao, Zhiteng & Fang, Long & Li, Rongfu & Ding, Boyin & Zhao, Bin & Leng, Jun & He, Fenglan, 2022. "Systematic analysis of performance and cost of two floating offshore wind turbines with significant interactions," Applied Energy, Elsevier, vol. 321(C).
    6. Liu, Jian & Zhu, Wenqing & Xiao, Zhixiang & Sun, Haisheng & Huang, Yong & Liu, Zhitao, 2018. "DDES with adaptive coefficient for stalled flows past a wind turbine airfoil," Energy, Elsevier, vol. 161(C), pages 846-858.
    7. Sun, Shilin & Wang, Tianyang & Chu, Fulei, 2022. "In-situ condition monitoring of wind turbine blades: A critical and systematic review of techniques, challenges, and futures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    8. Navid Belvasi & Boris Conan & Benyamin Schliffke & Laurent Perret & Cian Desmond & Jimmy Murphy & Sandrine Aubrun, 2022. "Far-Wake Meandering of a Wind Turbine Model with Imposed Motions: An Experimental S-PIV Analysis," Energies, MDPI, vol. 15(20), pages 1-17, October.
    9. Jijian Lian & Ou Cai & Xiaofeng Dong & Qi Jiang & Yue Zhao, 2019. "Health Monitoring and Safety Evaluation of the Offshore Wind Turbine Structure: A Review and Discussion of Future Development," Sustainability, MDPI, vol. 11(2), pages 1-29, January.
    10. Tao Luo & De Tian & Ruoyu Wang & Caicai Liao, 2018. "Stochastic Dynamic Response Analysis of a 10 MW Tension Leg Platform Floating Horizontal Axis Wind Turbine," Energies, MDPI, vol. 11(12), pages 1-24, November.
    11. Zhou, H.F. & Zheng, J.F. & Xie, Z.L. & Lu, L.J. & Ni, Y.Q. & Ko, J.M., 2017. "Temperature effects on vision measurement system in long-term continuous monitoring of displacement," Renewable Energy, Elsevier, vol. 114(PB), pages 968-983.
    12. Adrian Gambier, 2021. "Pitch Control of Three Bladed Large Wind Energy Converters—A Review," Energies, MDPI, vol. 14(23), pages 1-24, December.
    13. Pierre Tchakoua & René Wamkeue & Mohand Ouhrouche & Fouad Slaoui-Hasnaoui & Tommy Andy Tameghe & Gabriel Ekemb, 2014. "Wind Turbine Condition Monitoring: State-of-the-Art Review, New Trends, and Future Challenges," Energies, MDPI, vol. 7(4), pages 1-36, April.
    14. Dai, Juchuan & Li, Mimi & Chen, Huanguo & He, Tao & Zhang, Fan, 2022. "Progress and challenges on blade load research of large-scale wind turbines," Renewable Energy, Elsevier, vol. 196(C), pages 482-496.
    15. Wang, Yize & Liu, Zhenqing & Ma, Xueyun, 2023. "Improvement of tuned rolling cylinder damper for wind turbine tower vibration control considering real wind distribution," Renewable Energy, Elsevier, vol. 216(C).
    16. Currie, Magnus & Saafi, Mohamed & Tachtatzis, Christos & Quail, Francis, 2015. "Structural integrity monitoring of onshore wind turbine concrete foundations," Renewable Energy, Elsevier, vol. 83(C), pages 1131-1138.
    17. Martinez-Luengo, Maria & Kolios, Athanasios & Wang, Lin, 2016. "Structural health monitoring of offshore wind turbines: A review through the Statistical Pattern Recognition Paradigm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 91-105.
    18. Wang, Yize & Liu, Zhenqing & Wang, Hao, 2022. "Proposal and layout optimization of a wind-wave hybrid energy system using GPU-accelerated differential evolution algorithm," Energy, Elsevier, vol. 239(PA).
    19. Xiaowen Song & Zhitai Xing & Yan Jia & Xiaojuan Song & Chang Cai & Yinan Zhang & Zekun Wang & Jicai Guo & Qingan Li, 2022. "Review on the Damage and Fault Diagnosis of Wind Turbine Blades in the Germination Stage," Energies, MDPI, vol. 15(20), pages 1-17, October.
    20. Pustina, L. & Serafini, J. & Pasquali, C. & Solero, L. & Lidozzi, A. & Gennaretti, M., 2023. "A novel resonant controller for sea-induced rotor blade vibratory loads reduction on floating offshore wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:188:y:2022:i:c:p:96-113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.