IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v188y2022icp1029-1037.html
   My bibliography  Save this article

Comparative life cycle assessment of the ground source heat pump vs air source heat pump

Author

Listed:
  • Violante, Anna Carmela
  • Donato, Filippo
  • Guidi, Giambattista
  • Proposito, Marco

Abstract

In view of the decarbonisation of the thermal sector, the use of ground source heat pumps (GSHP) plays a key role. The geothermal system coupled with heat pumps, is the most energy efficient and environmentally sustainable heating and cooling system because the ground temperature is constant all year round, unlike traditional air-source heat pumps (ASHP). A comparative life cycle assessment of a pilot GSHP system, operating in the ENEA Casaccia Research Centre (Italy), and a conventional ASHP was performed. In accordance with ISO standard, the impacts on the four damage criteria were evaluated for each phase of the entire life cycle (production, installation, operation and end-of-life), using the SimaPro 9.0 software. The GSHP system has significant impacts compared to the other ASHP system components during manufacturing and installation. In contrast, slightly higher impacts of the ASHP system are recorded during the operational phase. It should be considered that the geothermal probe circuit has a useful life of 100 years, which allows for multiple operational life cycles of the geothermal plant. Therefore, the paper highlights that the GSHP system, as a whole, is more energy efficient and has a lower long-term environmental impact, compared to a traditional air conditioning system.

Suggested Citation

  • Violante, Anna Carmela & Donato, Filippo & Guidi, Giambattista & Proposito, Marco, 2022. "Comparative life cycle assessment of the ground source heat pump vs air source heat pump," Renewable Energy, Elsevier, vol. 188(C), pages 1029-1037.
  • Handle: RePEc:eee:renene:v:188:y:2022:i:c:p:1029-1037
    DOI: 10.1016/j.renene.2022.02.075
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122002233
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.02.075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Blum, Philipp & Campillo, Gisela & Münch, Wolfram & Kölbel, Thomas, 2010. "CO2 savings of ground source heat pump systems – A regional analysis," Renewable Energy, Elsevier, vol. 35(1), pages 122-127.
    2. Genchi, Yutaka & Kikegawa, Yukihiro & Inaba, Atsushi, 2002. "CO2 payback-time assessment of a regional-scale heating and cooling system using a ground source heat-pump in a high energy-consumption area in Tokyo," Applied Energy, Elsevier, vol. 71(3), pages 147-160, March.
    3. Aresti, Lazaros & Christodoulides, Paul & Florides, Georgios A., 2021. "An investigation on the environmental impact of various Ground Heat Exchangers configurations," Renewable Energy, Elsevier, vol. 171(C), pages 592-605.
    4. Kljajić, Miroslav V. & Anđelković, Aleksandar S. & Hasik, Vaclav & Munćan, Vladimir M. & Bilec, Melissa, 2020. "Shallow geothermal energy integration in district heating system: An example from Serbia," Renewable Energy, Elsevier, vol. 147(P2), pages 2791-2800.
    5. Violante, Anna Carmela & Proposito, Marco & Donato, Filippo & Guidi, Giambattista & Falconi, Luca Maria, 2021. "Preliminary study of a closed loop vertical ground source heat pump system for an experimental pilot plant (Rome, Italy)," Renewable Energy, Elsevier, vol. 176(C), pages 415-422.
    6. Saner, Dominik & Juraske, Ronnie & Kübert, Markus & Blum, Philipp & Hellweg, Stefanie & Bayer, Peter, 2010. "Is it only CO2 that matters? A life cycle perspective on shallow geothermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1798-1813, September.
    7. Ida Franzén & Linnéa Nedar & Maria Andersson, 2019. "Environmental Comparison of Energy Solutions for Heating and Cooling," Sustainability, MDPI, vol. 11(24), pages 1-17, December.
    8. Greening, Benjamin & Azapagic, Adisa, 2012. "Domestic heat pumps: Life cycle environmental impacts and potential implications for the UK," Energy, Elsevier, vol. 39(1), pages 205-217.
    9. Bayer, Peter & Saner, Dominik & Bolay, Stephan & Rybach, Ladislaus & Blum, Philipp, 2012. "Greenhouse gas emission savings of ground source heat pump systems in Europe: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1256-1267.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yubo & Quan, Zhenhua & Zhao, Yaohua & Wang, Lincheng & Jing, Heran, 2022. "Operation mode performance and optimization of a novel coupled air and ground source heat pump system with energy storage: Case study of a hotel building," Renewable Energy, Elsevier, vol. 201(P1), pages 889-903.
    2. Viktoria Mannheim & Károly Nehéz & Salman Brbhan & Péter Bencs, 2023. "Primary Energy Resources and Environmental Impacts of Various Heating Systems Based on Life Cycle Assessment," Energies, MDPI, vol. 16(19), pages 1-23, October.
    3. Boahen, Samuel & Anka, Selorm Kwaku & Ohm, Tae In & Cho, Yong & Choi, Jong Woong & Kim, Han-Young & Choi, Jong Min, 2023. "Capacity control of a cascade multi-purpose heat pump using variable speed compressor," Renewable Energy, Elsevier, vol. 205(C), pages 945-955.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aresti, Lazaros & Christodoulides, Paul & Florides, Georgios A., 2021. "An investigation on the environmental impact of various Ground Heat Exchangers configurations," Renewable Energy, Elsevier, vol. 171(C), pages 592-605.
    2. Jimin Kim & Taehoon Hong & Myeongsoo Chae & Choongwan Koo & Jaemin Jeong, 2015. "An Environmental and Economic Assessment for Selecting the Optimal Ground Heat Exchanger by Considering the Entering Water Temperature," Energies, MDPI, vol. 8(8), pages 1-25, July.
    3. Karytsas, Spyridon & Choropanitis, Ioannis, 2017. "Barriers against and actions towards renewable energy technologies diffusion: A Principal Component Analysis for residential ground source heat pump (GSHP) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 252-271.
    4. Andrea Aquino & Flavio Scrucca & Emanuele Bonamente, 2021. "Sustainability of Shallow Geothermal Energy for Building Air-Conditioning," Energies, MDPI, vol. 14(21), pages 1-30, October.
    5. Sivasakthivel, T. & Murugesan, K. & Sahoo, P.K., 2015. "Study of technical, economical and environmental viability of ground source heat pump system for Himalayan cities of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 452-462.
    6. Michopoulos, A. & Zachariadis, T. & Kyriakis, N., 2013. "Operation characteristics and experience of a ground source heat pump system with a vertical ground heat exchanger," Energy, Elsevier, vol. 51(C), pages 349-357.
    7. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    8. Böttcher, Fabian & Casasso, Alessandro & Götzl, Gregor & Zosseder, Kai, 2019. "TAP - Thermal aquifer Potential: A quantitative method to assess the spatial potential for the thermal use of groundwater," Renewable Energy, Elsevier, vol. 142(C), pages 85-95.
    9. Francesco, Tinti & Annamaria, Pangallo & Martina, Berneschi & Dario, Tosoni & Dušan, Rajver & Simona, Pestotnik & Dalibor, Jovanović & Tomislav, Rudinica & Slavisa, Jelisić & Branko, Zlokapa & Attilio, 2016. "How to boost shallow geothermal energy exploitation in the adriatic area: the LEGEND project experience," Energy Policy, Elsevier, vol. 92(C), pages 190-204.
    10. Stemmle, Ruben & Blum, Philipp & Schüppler, Simon & Fleuchaus, Paul & Limoges, Melissa & Bayer, Peter & Menberg, Kathrin, 2021. "Environmental impacts of aquifer thermal energy storage (ATES)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    11. Hu, Jinzhong, 2017. "An improved analytical model for vertical borehole ground heat exchanger with multiple-layer substrates and groundwater flow," Applied Energy, Elsevier, vol. 202(C), pages 537-549.
    12. Carvalho, Anabela Duarte & Mendrinos, Dimitris & De Almeida, Anibal T., 2015. "Ground source heat pump carbon emissions and primary energy reduction potential for heating in buildings in Europe—results of a case study in Portugal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 755-768.
    13. Arif Widiatmojo & Sasimook Chokchai & Isao Takashima & Yohei Uchida & Kasumi Yasukawa & Srilert Chotpantarat & Punya Charusiri, 2019. "Ground-Source Heat Pumps with Horizontal Heat Exchangers for Space Cooling in the Hot Tropical Climate of Thailand," Energies, MDPI, vol. 12(7), pages 1-22, April.
    14. Sivasakthivel, T. & Murugesan, K. & Sahoo, P.K., 2014. "A study on energy and CO2 saving potential of ground source heat pump system in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 278-293.
    15. Bayer, Peter & Saner, Dominik & Bolay, Stephan & Rybach, Ladislaus & Blum, Philipp, 2012. "Greenhouse gas emission savings of ground source heat pump systems in Europe: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1256-1267.
    16. Hähnlein, Stefanie & Bayer, Peter & Ferguson, Grant & Blum, Philipp, 2013. "Sustainability and policy for the thermal use of shallow geothermal energy," Energy Policy, Elsevier, vol. 59(C), pages 914-925.
    17. Aranzabal, Nordin & Martos, Julio & Steger, Hagen & Blum, Philipp & Soret, Jesús, 2019. "Temperature measurements along a vertical borehole heat exchanger: A method comparison," Renewable Energy, Elsevier, vol. 143(C), pages 1247-1258.
    18. Amponsah, Nana Yaw & Troldborg, Mads & Kington, Bethany & Aalders, Inge & Hough, Rupert Lloyd, 2014. "Greenhouse gas emissions from renewable energy sources: A review of lifecycle considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 461-475.
    19. Tamás Buday & Erika Buday-Bódi, 2023. "Reduction in CO 2 Emissions with Bivalent Heat Pump Systems," Energies, MDPI, vol. 16(7), pages 1-18, April.
    20. Vivek Aggarwal & Chandan Swaroop Meena & Ashok Kumar & Tabish Alam & Anuj Kumar & Arijit Ghosh & Aritra Ghosh, 2020. "Potential and Future Prospects of Geothermal Energy in Space Conditioning of Buildings: India and Worldwide Review," Sustainability, MDPI, vol. 12(20), pages 1-19, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:188:y:2022:i:c:p:1029-1037. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.