IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v181y2022icp653-665.html
   My bibliography  Save this article

Utilizing jet impingement on protrusion/dimple heated plate to improve the performance of double pass solar heat collector

Author

Listed:
  • Salman, Mohammad
  • Chauhan, Ranchan
  • Poongavanam, Ganesh kumar
  • Park, Myeong Hyun
  • Kim, Sung Chul

Abstract

The effect of geometrical parameters of jet impingement on indented protrusion absorber in double-pass solar heat collector (DPSHC) was investigated. For fixed optimum values of protrusion parameters namely arc angle (αp), relative height ratio (ep/Dh), and relative pitch ratio (p/Dh), four different jet height ratios (Hji/Dh) ranging from 0.11 to 0.44 have been used with varying streamwise pitch (Xji/Dh) and spanwise pitch ratio (Yji/Dh). At a constant jet diameter ratio (Dji/Dh), the Reynolds number (Re) of the airflow fluctuated between 2500 and 22500. It has been found that the Hji/Dh plays an important role in the performance of DPSHC and that the maximum value of the Nusselt number (Nudp) = 544 with friction factor (ffdp) = 0.206 was obtained at Xji/Dh=1.32, Hji/Dh=0.22, and Yji/Dh=1.32. The investigation reveals that the thermohydraulic performance (ηdp) of the DPSHC increases as the Re increases from 2500 to 15000 and after that from 15000 to 22500 it starts to decline. The optimum value of ηdp = 3.86 has been found corresponding to Re = 15000, Hji/Dh=0.22, Xji/Dh=1.32, and Yji/Dh=1.32. Nudp and ffdp correlations were developed in terms of jet impingement parameters and the selected range of Re which can be useful for estimating the performance of a DPSHC with the combined technique. The optimum deviation in the Nudp and ffdp values was ±10%, which correlated well with the experimental results.

Suggested Citation

  • Salman, Mohammad & Chauhan, Ranchan & Poongavanam, Ganesh kumar & Park, Myeong Hyun & Kim, Sung Chul, 2022. "Utilizing jet impingement on protrusion/dimple heated plate to improve the performance of double pass solar heat collector," Renewable Energy, Elsevier, vol. 181(C), pages 653-665.
  • Handle: RePEc:eee:renene:v:181:y:2022:i:c:p:653-665
    DOI: 10.1016/j.renene.2021.09.082
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121014099
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.09.082?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Poongavanam, Ganesh Kumar & Panchabikesan, Karthik & Leo, Anto Joseph Deeyoko & Ramalingam, Velraj, 2018. "Experimental investigation on heat transfer augmentation of solar air heater using shot blasted V-corrugated absorber plate," Renewable Energy, Elsevier, vol. 127(C), pages 213-229.
    2. Zheng, Wandong & Zhang, Huan & You, Shijun & Fu, Yindan & Zheng, Xuejing, 2017. "Thermal performance analysis of a metal corrugated packing solar air collector in cold regions," Applied Energy, Elsevier, vol. 203(C), pages 938-947.
    3. Salman, Mohammad & Park, Myeong Hyeon & Chauhan, Ranchan & Kim, Sung Chul, 2021. "Experimental analysis of single loop solar heat collector with jet impingement over indented dimples," Renewable Energy, Elsevier, vol. 169(C), pages 618-628.
    4. Singh, Satyender, 2020. "Experimental and numerical investigations of a single and double pass porous serpentine wavy wiremesh packed bed solar air heater," Renewable Energy, Elsevier, vol. 145(C), pages 1361-1387.
    5. Chauhan, Ranchan & Thakur, N.S., 2014. "Investigation of the thermohydraulic performance of impinging jet solar air heater," Energy, Elsevier, vol. 68(C), pages 255-261.
    6. Ho, C.D. & Yeh, H.M. & Wang, R.C., 2005. "Heat-transfer enhancement in double-pass flat-plate solar air heaters with recycle," Energy, Elsevier, vol. 30(15), pages 2796-2817.
    7. Singh, Satyender & Dhiman, Prashant, 2016. "Thermal performance of double pass packed bed solar air heaters – A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1010-1031.
    8. Saini, R.P. & Verma, Jitendra, 2008. "Heat transfer and friction factor correlations for a duct having dimple-shape artificial roughness for solar air heaters," Energy, Elsevier, vol. 33(8), pages 1277-1287.
    9. Ravi, Ravi Kant & Saini, R.P., 2016. "Experimental investigation on performance of a double pass artificial roughened solar air heater duct having roughness elements of the combination of discrete multi V shaped and staggered ribs," Energy, Elsevier, vol. 116(P1), pages 507-516.
    10. Abhishek Kumar Goel & S. N. Singh, 2020. "Experimental study of heat transfer characteristics of an impinging jet solar air heater with fins," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(4), pages 3641-3653, April.
    11. Karim, Md Azharul & Hawlader, M.N.A, 2006. "Performance investigation of flat plate, v-corrugated and finned air collectors," Energy, Elsevier, vol. 31(4), pages 452-470.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vengadesan, Elumalai & Senthil, Ramalingam, 2020. "A review on recent developments in thermal performance enhancement methods of flat plate solar air collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Alam, Tabish & Kim, Man-Hoe, 2017. "Performance improvement of double-pass solar air heater – A state of art of review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 779-793.
    3. Varun Pratap Singh & Siddharth Jain & Ashish Karn & Ashwani Kumar & Gaurav Dwivedi & Chandan Swaroop Meena & Nitesh Dutt & Aritra Ghosh, 2022. "Recent Developments and Advancements in Solar Air Heaters: A Detailed Review," Sustainability, MDPI, vol. 14(19), pages 1-55, September.
    4. Salman, Mohammad & Chauhan, Ranchan & Poongavanam, Ganesh Kumar & Kim, Sung Chul, 2022. "Analytical investigation of jet impingement solar air heater with dimple-roughened absorber surface via thermal and effective analysis," Renewable Energy, Elsevier, vol. 199(C), pages 1248-1257.
    5. Salman, Mohammad & Chauhan, Ranchan & Kim, Sung Chul, 2021. "Exergy analysis of solar heat collector with air jet impingement on dimple-shape-roughened absorber surface," Renewable Energy, Elsevier, vol. 179(C), pages 918-928.
    6. Singh, Satyender & Chaurasiya, Shailendra Kumar & Negi, Bharat Singh & Chander, Subhash & Nemś, Magdalena & Negi, Sushant, 2020. "Utilizing circular jet impingement to enhance thermal performance of solar air heater," Renewable Energy, Elsevier, vol. 154(C), pages 1327-1345.
    7. Chauhan, Ranchan & Kim, Sung Chul, 2019. "Effective efficiency distribution characteristics in protruded/dimpled-arc plate solar thermal collector," Renewable Energy, Elsevier, vol. 138(C), pages 955-963.
    8. El-Sebaii, A.A. & Al-Snani, H., 2010. "Effect of selective coating on thermal performance of flat plate solar air heaters," Energy, Elsevier, vol. 35(4), pages 1820-1828.
    9. Maithani, Rajesh & Sharma, Sachin & Kumar, Anil, 2021. "Thermo-hydraulic and exergy analysis of inclined impinging jets on absorber plate of solar air heater," Renewable Energy, Elsevier, vol. 179(C), pages 84-95.
    10. Mohammadi, K. & Sabzpooshani, M., 2013. "Comprehensive performance evaluation and parametric studies of single pass solar air heater with fins and baffles attached over the absorber plate," Energy, Elsevier, vol. 57(C), pages 741-750.
    11. Hassan, Hamdy & Abo-Elfadl, Saleh & El-Dosoky, M.F., 2020. "An experimental investigation of the performance of new design of solar air heater (tubular)," Renewable Energy, Elsevier, vol. 151(C), pages 1055-1066.
    12. Ozgen, Filiz & Esen, Mehmet & Esen, Hikmet, 2009. "Experimental investigation of thermal performance of a double-flow solar air heater having aluminium cans," Renewable Energy, Elsevier, vol. 34(11), pages 2391-2398.
    13. Ravi, Ravi Kant & Saini, Rajeshwer Prasad, 2016. "A review on different techniques used for performance enhancement of double pass solar air heaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 941-952.
    14. Hassan, Hamdy & Abo-Elfadl, Saleh, 2018. "Experimental study on the performance of double pass and two inlet ports solar air heater (SAH) at different configurations of the absorber plate," Renewable Energy, Elsevier, vol. 116(PA), pages 728-740.
    15. Mandal, Soumya & Ghosh, Subir Kumar, 2020. "Experimental investigation of the performance of a double pass solar water heater with reflector," Renewable Energy, Elsevier, vol. 149(C), pages 631-640.
    16. Hedayatizadeh, Mahdi & Sarhaddi, Faramarz & Safavinejad, Ali & Ranjbar, Faramarz & Chaji, Hossein, 2016. "Exergy loss-based efficiency optimization of a double-pass/glazed v-corrugated plate solar air heater," Energy, Elsevier, vol. 94(C), pages 799-810.
    17. Al-Zahrani, Salman, 2023. "Thermal performance augmentation of solar air heater with curved path," Energy, Elsevier, vol. 284(C).
    18. Varun Kumar, B. & Manikandan, G. & Rajesh Kanna, P., 2021. "Enhancement of heat transfer in SAH with polygonal and trapezoidal shape of the rib using CFD," Energy, Elsevier, vol. 234(C).
    19. Ramadan, M.R.I. & El-Sebaii, A.A. & Aboul-Enein, S. & El-Bialy, E., 2007. "Thermal performance of a packed bed double-pass solar air heater," Energy, Elsevier, vol. 32(8), pages 1524-1535.
    20. Singh, Satyender & Dhiman, Prashant, 2016. "Thermal performance of double pass packed bed solar air heaters – A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1010-1031.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:181:y:2022:i:c:p:653-665. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.