IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v181y2022icp105-115.html
   My bibliography  Save this article

On the use of experimental measured data to derive the linear regression usually adopted for determining the performance parameters of a solar cooker

Author

Listed:
  • Ruivo, Celestino Rodrigues
  • Apaolaza-Pagoaga, Xabier
  • Di Nicola, Giovanni
  • Carrillo-Andrés, Antonio

Abstract

In the present work, the results of testing panel and box solar cookers are used to investigate the suitability of using the linear regression for estimation of the performance parameters of a solar cooker. The panel cooker and the box cooker were experimentally tested with glycerine and peanut oil, respectively.

Suggested Citation

  • Ruivo, Celestino Rodrigues & Apaolaza-Pagoaga, Xabier & Di Nicola, Giovanni & Carrillo-Andrés, Antonio, 2022. "On the use of experimental measured data to derive the linear regression usually adopted for determining the performance parameters of a solar cooker," Renewable Energy, Elsevier, vol. 181(C), pages 105-115.
  • Handle: RePEc:eee:renene:v:181:y:2022:i:c:p:105-115
    DOI: 10.1016/j.renene.2021.09.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121013458
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.09.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lahkar, Pranab J. & Bhamu, Rajesh K. & Samdarshi, S.K., 2012. "Enabling inter-cooker thermal performance comparison based on cooker opto-thermal ratio (COR)," Applied Energy, Elsevier, vol. 99(C), pages 491-495.
    2. Sagade, Atul A. & Samdarshi, S.K. & Lahkar, P.J. & Sagade, Narayani A., 2020. "Experimental determination of the thermal performance of a solar box cooker with a modified cooking pot," Renewable Energy, Elsevier, vol. 150(C), pages 1001-1009.
    3. Apaolaza-Pagoaga, Xabier & Carrillo-Andrés, Antonio & Ruivo, Celestino Rodrigues, 2021. "New approach for analysing the effect of minor and major solar cooker design changes: Influence of height trivet on the power of a funnel cooker," Renewable Energy, Elsevier, vol. 179(C), pages 2071-2085.
    4. Ruivo, Celestino Rodrigues & Carrillo-Andrés, Antonio & Apaolaza-Pagoaga, Xabier, 2021. "Experimental determination of the standardised power of a solar funnel cooker for low sun elevations," Renewable Energy, Elsevier, vol. 170(C), pages 364-374.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aquilanti, Alessia & Tomassetti, Sebastiano & Muccioli, Matteo & Di Nicola, Giovanni, 2023. "Design and experimental characterization of a solar cooker with a prismatic cooking chamber and adjustable panel reflectors," Renewable Energy, Elsevier, vol. 202(C), pages 405-418.
    2. Ruivo, Celestino Rodrigues & Apaolaza-Pagoaga, Xabier & Coccia, Gianluca & Carrillo-Andrés, Antonio, 2022. "Proposal of a non-linear curve for reporting the performance of solar cookers," Renewable Energy, Elsevier, vol. 191(C), pages 110-121.
    3. Ruivo, Celestino Rodrigues & Coccia, Gianluca & Di Nicola, Giovanni & Carrillo-Andrés, Antonio & Apaolaza-Pagoaga, Xabier, 2022. "Standardised power of solar cookers with a linear performance curve following the Hottel-Whillier-Bliss formulation," Renewable Energy, Elsevier, vol. 200(C), pages 1202-1210.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruivo, Celestino Rodrigues & Apaolaza-Pagoaga, Xabier & Coccia, Gianluca & Carrillo-Andrés, Antonio, 2022. "Proposal of a non-linear curve for reporting the performance of solar cookers," Renewable Energy, Elsevier, vol. 191(C), pages 110-121.
    2. Aquilanti, Alessia & Tomassetti, Sebastiano & Muccioli, Matteo & Di Nicola, Giovanni, 2023. "Design and experimental characterization of a solar cooker with a prismatic cooking chamber and adjustable panel reflectors," Renewable Energy, Elsevier, vol. 202(C), pages 405-418.
    3. Ruivo, Celestino Rodrigues & Coccia, Gianluca & Di Nicola, Giovanni & Carrillo-Andrés, Antonio & Apaolaza-Pagoaga, Xabier, 2022. "Standardised power of solar cookers with a linear performance curve following the Hottel-Whillier-Bliss formulation," Renewable Energy, Elsevier, vol. 200(C), pages 1202-1210.
    4. Apaolaza-Pagoaga, Xabier & Carrillo-Andrés, Antonio & Ruivo, Celestino Rodrigues, 2021. "New approach for analysing the effect of minor and major solar cooker design changes: Influence of height trivet on the power of a funnel cooker," Renewable Energy, Elsevier, vol. 179(C), pages 2071-2085.
    5. Apaolaza-Pagoaga, Xabier & Carrillo-Andrés, Antonio & Ruivo, Celestino Rodrigues, 2022. "Experimental characterization of the thermal performance of the Haines 2 solar cooker," Energy, Elsevier, vol. 257(C).
    6. Khatri, Rahul & Goyal, Rahul & Sharma, Ravi Kumar, 2021. "Advances in the developments of solar cooker for sustainable development: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    7. Kashyap, S. Rahul & Pramanik, Santanu & Ravikrishna, R.V., 2023. "A review of solar, electric and hybrid cookstoves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    8. Aramesh, Mohamad & Ghalebani, Mehdi & Kasaeian, Alibakhsh & Zamani, Hosein & Lorenzini, Giulio & Mahian, Omid & Wongwises, Somchai, 2019. "A review of recent advances in solar cooking technology," Renewable Energy, Elsevier, vol. 140(C), pages 419-435.
    9. Muthu Kumaran Gunasegaran & Md Hasanuzzaman & ChiaKwang Tan & Ab Halim Abu Bakar & Vignes Ponniah, 2023. "Energy Consumption, Energy Analysis, and Solar Energy Integration for Commercial Building Restaurants," Energies, MDPI, vol. 16(20), pages 1-26, October.
    10. Mahavar, S. & Sengar, N. & Dashora, P., 2017. "Analytical model for electric back-up power estimation of solar box type cookers," Energy, Elsevier, vol. 134(C), pages 871-881.
    11. Apaolaza-Pagoaga, Xabier & Carrillo-Andrés, Antonio & Rodrigues Ruivo, Celestino, 2022. "Experimental thermal performance evaluation of different configurations of Copenhagen solar cooker," Renewable Energy, Elsevier, vol. 184(C), pages 604-618.
    12. Abhisek Sarangi & Asish Sarangi & Sudhansu Sekhar Sahoo & Ramesh Kumar Mallik & Mohamed M. Awad, 2023. "Conjugate Radiation and Convection Heat Transfer Analysis in Solar Cooker Cavity Using a Computational Approach," Energies, MDPI, vol. 16(9), pages 1-25, May.
    13. Martin Beer & Radim Rybár & Jana Rybárová & Andrea Seňová & Vojtech Ferencz, 2021. "Numerical Analysis of Concentrated Solar Heaters for Segmented Heat Accumulators," Energies, MDPI, vol. 14(14), pages 1-20, July.
    14. Sagade, Atul A. & Samdarshi, S.K. & Lahkar, P.J. & Sagade, Narayani A., 2020. "Experimental determination of the thermal performance of a solar box cooker with a modified cooking pot," Renewable Energy, Elsevier, vol. 150(C), pages 1001-1009.
    15. Vengadesan, Elumalai & Senthil, Ramalingam, 2021. "Experimental investigation of the thermal performance of a box type solar cooker using a finned cooking vessel," Renewable Energy, Elsevier, vol. 171(C), pages 431-446.
    16. Al-Nehari, Hamoud A. & Mohammed, Mahmoud A. & Odhah, Abdulkarem A. & Al-attab, K.A. & Mohammed, Bakeel K. & Al-Habari, Abdulwahab M. & Al-Fahd, Nasr H., 2021. "Experimental and numerical analysis of tiltable box-type solar cooker with tracking mechanism," Renewable Energy, Elsevier, vol. 180(C), pages 954-965.
    17. Koshti, Bhupendra & Dev, Rahul & Bharti, Ajaya & Narayan, Audhesh, 2023. "Comparative performance evaluation of modified solar cookers for subtropical climate conditions," Renewable Energy, Elsevier, vol. 209(C), pages 505-515.
    18. Cuce, Erdem & Cuce, Pinar Mert, 2013. "A comprehensive review on solar cookers," Applied Energy, Elsevier, vol. 102(C), pages 1399-1421.
    19. Indora, Sunil & Kandpal, Tara C., 2018. "Institutional cooking with solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 131-154.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:181:y:2022:i:c:p:105-115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.