IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v179y2021icp766-777.html
   My bibliography  Save this article

Biogas production enhancement by co-digestion of empty fruit bunch (EFB) with palm oil mill effluent (POME): Performance and kinetic evaluation

Author

Listed:
  • Liew, Zhen Kang
  • Chan, Yi Jing
  • Ho, Zheng Theng
  • Yip, Yew Hong
  • Teng, Ming Chern
  • Ameer Abbas bin, Ameer Illham Tuah
  • Chong, Siewhui
  • Show, Pau Loke
  • Chew, Chien Lye

Abstract

The palm oil industry is gearing itself towards sustainability by implementing mandatory biogas capture for all palm oil mills in the effort to reduce greenhouse gases. This action also indicates that the anaerobic digestion of palm oil mill effluent (POME) will be one of the essential sources of biogas for energy generation. However, the availability of POME is limited during the low crop season due to the lower palm oil production. Concurrently, the solid wastes known as empty fruit bunches (EFB) are also produced from the oil mill. EFB has vast potential for power generation, though it is currently not being fully utilized. Therefore, this work aims to enhance the biogas production from anaerobic co-digestion (ACD) of EFB with POME by evaluating the effect of alkaline pretreatment of EFB, EFB-to-POME ratio, and temperature on the methane yield. The optimum EFB:POME ratio is 0.6:1 as the methane production of this ratio at both thermophilic and mesophilic conditions are relatively high (up to 74.02 ml CH4/g VS). Results show that ACD performs 2.36 times better than mono-digestion of POME at mesophilic conditions. The modified Gompertz model could predict the process behavior of the ACD of EFB with POME with high R2 (>0.95). Further investigation on other potential pretreatment methods and synergism analysis of co-digestion, which provides a balance between efficiency and economy could be carried out. The impact of this work will be towards a sustainable environment, which will significantly reduce the environmental impacts of palm oil production.

Suggested Citation

  • Liew, Zhen Kang & Chan, Yi Jing & Ho, Zheng Theng & Yip, Yew Hong & Teng, Ming Chern & Ameer Abbas bin, Ameer Illham Tuah & Chong, Siewhui & Show, Pau Loke & Chew, Chien Lye, 2021. "Biogas production enhancement by co-digestion of empty fruit bunch (EFB) with palm oil mill effluent (POME): Performance and kinetic evaluation," Renewable Energy, Elsevier, vol. 179(C), pages 766-777.
  • Handle: RePEc:eee:renene:v:179:y:2021:i:c:p:766-777
    DOI: 10.1016/j.renene.2021.07.073
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121010788
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.07.073?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Somrat Kerdsuwan & Krongkaew Laohalidanond, 2011. "Renewable Energy from Palm Oil Empty Fruit Bunch," Chapters, in: Majid Nayeripour & Mostafa Kheshti (ed.), Renewable Energy - Trends and Applications, IntechOpen.
    2. Yang, Ziyi & Wang, Wen & He, Yanfeng & Zhang, Ruihong & Liu, Guangqing, 2018. "Effect of ammonia on methane production, methanogenesis pathway, microbial community and reactor performance under mesophilic and thermophilic conditions," Renewable Energy, Elsevier, vol. 125(C), pages 915-925.
    3. O-Thong, Sompong & Boe, Kanokwan & Angelidaki, Irini, 2012. "Thermophilic anaerobic co-digestion of oil palm empty fruit bunches with palm oil mill effluent for efficient biogas production," Applied Energy, Elsevier, vol. 93(C), pages 648-654.
    4. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2013. "Feasibility study of biogas production and utilization as a source of renewable energy in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 454-462.
    5. Ware, Aidan & Power, Niamh, 2017. "Modelling methane production kinetics of complex poultry slaughterhouse wastes using sigmoidal growth functions," Renewable Energy, Elsevier, vol. 104(C), pages 50-59.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arnita Rishanty & Maxensius Tri Sambodo & Mesnan Silalahi & Erliza Hambali, 2021. "Zero-Waste Bioenergy To Lower Energy Transition Risks In Indonesia," Working Papers WP/17/2021, Bank Indonesia.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Choong, Yee Yaw & Chou, Kian Weng & Norli, Ismail, 2018. "Strategies for improving biogas production of palm oil mill effluent (POME) anaerobic digestion: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2993-3006.
    2. Aziz, Muhammad & Prawisudha, Pandji & Prabowo, Bayu & Budiman, Bentang Arief, 2015. "Integration of energy-efficient empty fruit bunch drying with gasification/combined cycle systems," Applied Energy, Elsevier, vol. 139(C), pages 188-195.
    3. Abdeshahian, Peyman & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2016. "Potential of biogas production from farm animal waste in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 714-723.
    4. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    5. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2014. "Development of biogas combustion in combined heat and power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 868-875.
    6. Zhang, Le & Loh, Kai-Chee & Lim, Jun Wei & Zhang, Jingxin, 2019. "Bioinformatics analysis of metagenomics data of biogas-producing microbial communities in anaerobic digesters: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 110-126.
    7. Huayong Zhang & Di An & Yudong Cao & Yonglan Tian & Jinxian He, 2021. "Modeling the Methane Production Kinetics of Anaerobic Co-Digestion of Agricultural Wastes Using Sigmoidal Functions," Energies, MDPI, vol. 14(2), pages 1-12, January.
    8. Chia-Chi Chang & Manh Van Do & Wei-Li Hsu & Bo-Liang Liu & Ching-Yuan Chang & Yi-Hung Chen & Min-Hao Yuan & Cheng-Fang Lin & Chang-Ping Yu & Yen-Hau Chen & Je-Lueng Shie & Wan-Yi Wu & Chien-Hsien Lee , 2019. "A Case Study on the Electricity Generation Using a Micro Gas Turbine Fuelled by Biogas from a Sewage Treatment Plant," Energies, MDPI, vol. 12(12), pages 1-15, June.
    9. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul & Aghili, Nasim, 2013. "The scenario of greenhouse gases reduction in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 400-409.
    10. Nur Izzah Hamna A. Aziz & Marlia M. Hanafiah & Shabbir H. Gheewala & Haikal Ismail, 2020. "Bioenergy for a Cleaner Future: A Case Study of Sustainable Biogas Supply Chain in the Malaysian Energy Sector," Sustainability, MDPI, vol. 12(8), pages 1-24, April.
    11. Shitophyta Lukhi Mulia & Arnita Arnita & Wulansari Hilda Dyah Ana, 2023. "Evaluation and modelling of biogas production from batch anaerobic digestion of corn stover with oxalic acid," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 69(3), pages 151-157.
    12. Regimantas Dauknys & Aušra Mažeikienė, 2023. "Process Improvement of Biogas Production from Sewage Sludge Applying Iron Oxides-Based Additives," Energies, MDPI, vol. 16(7), pages 1-15, April.
    13. Héctor Alfredo López-Aguilar & Bryan Morales-Durán & David Quiroz-Cardoza & Antonino Pérez-Hernández, 2023. "Lag Phase in the Anaerobic Co-Digestion of Sargassum spp. and Organic Domestic Waste," Energies, MDPI, vol. 16(14), pages 1-15, July.
    14. Ao, Tianjie & Chen, Lin & Zhou, Pan & Liu, Xiaofeng & Li, Dong, 2021. "The role of oxidation-reduction potential as an early warning indicator, and a microbial instability mechanism in a pilot-scale anaerobic mesophilic digestion of chicken manure," Renewable Energy, Elsevier, vol. 179(C), pages 223-232.
    15. Marta Wiśniewska & Andrzej Kulig & Krystyna Lelicińska-Serafin, 2021. "Odour Nuisance at Municipal Waste Biogas Plants and the Effect of Feedstock Modification on the Circular Economy—A Review," Energies, MDPI, vol. 14(20), pages 1-22, October.
    16. Noor Azrimi Umor & Sumaiyah Abdullah & Azhar Mohamad & Shahrul Bin Ismail & Siti Izera Ismail & Azizah Misran, 2021. "Energy Potential of Oil Palm Empty Fruit Bunch (EFB) Fiber from Subsequent Cultivation of Volvariella volvacea (Bull.) Singer," Sustainability, MDPI, vol. 13(23), pages 1-15, November.
    17. Eljamal, Ramadan & Maamoun, Ibrahim & Bensaida, Khaoula & Yilmaz, Gulsum & Sugihara, Yuij & Eljamal, Osama, 2022. "A novel method to improve methane generation from waste sludge using iron nanoparticles coated with magnesium hydroxide," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    18. Xiao, Youqian & Yang, Hongnan & Zheng, Dan & Liu, Yi & Deng, Liangwei, 2022. "Alleviation of ammonia inhibition in dry anaerobic digestion of swine manure," Energy, Elsevier, vol. 253(C).
    19. Xiao, Youqian & Yang, Hongnan & Zheng, Dan & Liu, Yi & Zhao, Cong & Deng, Liangwei, 2021. "Granular activated carbon alleviates the combined stress of ammonia and adverse temperature conditions during dry anaerobic digestion of swine manure," Renewable Energy, Elsevier, vol. 169(C), pages 451-460.
    20. Hosseini, Seyed Ehsan & Andwari, Amin Mahmoudzadeh & Wahid, Mazlan Abdul & Bagheri, Ghobad, 2013. "A review on green energy potentials in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 533-545.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:179:y:2021:i:c:p:766-777. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.