IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v125y2018icp915-925.html
   My bibliography  Save this article

Effect of ammonia on methane production, methanogenesis pathway, microbial community and reactor performance under mesophilic and thermophilic conditions

Author

Listed:
  • Yang, Ziyi
  • Wang, Wen
  • He, Yanfeng
  • Zhang, Ruihong
  • Liu, Guangqing

Abstract

The effects of ammonia on methane production, methanogenesis pathway, microbial community, and reactor performance were investigated in this study. More than 20% of methane production loss was observed in mesophilic and thermophilic reactors when the ammonia level exceeded 2 and 5 g NH4+-N/L, respectively. The volatile fatty acid (VFA) data indicated that acetogenesis and methanogenesis are strongly influenced by ammonia inhibition under the mesophilic condition, while methanogenesis was mainly affected under thermophilic condition. No evident methanogenesis pathway shift was found in the mesophilic reactor, whereas the increase in NH4+-N concentration to more than 5 g/L led to a clear shift from aceticlastic to complex and flexible pathways, thereby significantly enriching the hydrogenotrophic pathway in the thermophilic reactor. The function and response of the microbial community to ammonia inhibition were consistent despite the difference in population and diversity under mesophilic and thermophilic conditions.

Suggested Citation

  • Yang, Ziyi & Wang, Wen & He, Yanfeng & Zhang, Ruihong & Liu, Guangqing, 2018. "Effect of ammonia on methane production, methanogenesis pathway, microbial community and reactor performance under mesophilic and thermophilic conditions," Renewable Energy, Elsevier, vol. 125(C), pages 915-925.
  • Handle: RePEc:eee:renene:v:125:y:2018:i:c:p:915-925
    DOI: 10.1016/j.renene.2018.03.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118303380
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.03.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fei Wang & Mengfu Pei & Ling Qiu & Yiqing Yao & Congguang Zhang & Hong Qiang, 2019. "Performance of Anaerobic Digestion of Chicken Manure Under Gradually Elevated Organic Loading Rates," IJERPH, MDPI, vol. 16(12), pages 1-17, June.
    2. Xiao, Youqian & Yang, Hongnan & Zheng, Dan & Liu, Yi & Deng, Liangwei, 2022. "Alleviation of ammonia inhibition in dry anaerobic digestion of swine manure," Energy, Elsevier, vol. 253(C).
    3. Andrea Zanellati & Federica Spina & Luca Rollé & Giovanna Cristina Varese & Elio Dinuccio, 2020. "Fungal Pretreatments on Non-Sterile Solid Digestate to Enhance Methane Yield and the Sustainability of Anaerobic Digestion," Sustainability, MDPI, vol. 12(20), pages 1-15, October.
    4. Yu, Lu & Yuan, Haiping & Zhu, Nanwen & Shen, Yanwen, 2021. "How does choline change methanogenesis pathway in anaerobic digestion of waste activated sludge?," Energy, Elsevier, vol. 224(C).
    5. Liew, Zhen Kang & Chan, Yi Jing & Ho, Zheng Theng & Yip, Yew Hong & Teng, Ming Chern & Ameer Abbas bin, Ameer Illham Tuah & Chong, Siewhui & Show, Pau Loke & Chew, Chien Lye, 2021. "Biogas production enhancement by co-digestion of empty fruit bunch (EFB) with palm oil mill effluent (POME): Performance and kinetic evaluation," Renewable Energy, Elsevier, vol. 179(C), pages 766-777.
    6. Xiao, Youqian & Yang, Hongnan & Zheng, Dan & Liu, Yi & Zhao, Cong & Deng, Liangwei, 2021. "Granular activated carbon alleviates the combined stress of ammonia and adverse temperature conditions during dry anaerobic digestion of swine manure," Renewable Energy, Elsevier, vol. 169(C), pages 451-460.
    7. Zhang, Le & Loh, Kai-Chee & Lim, Jun Wei & Zhang, Jingxin, 2019. "Bioinformatics analysis of metagenomics data of biogas-producing microbial communities in anaerobic digesters: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 110-126.
    8. Pohl, Marcel & Sánchez-Sánchez, Maria & Mumme, Jan, 2019. "Anaerobic digestion of wheat straw and rape oil cake in a two-stage solid-state system," Renewable Energy, Elsevier, vol. 141(C), pages 359-367.
    9. M. Devendran Manogaran & Mohd Hakimi & Mohammad Harith Nizam Basheer Ahmad & Rashid Shamsuddin & Jun Wei Lim & Muzamil Abdalla M Hassan & Nurul Tasnim Sahrin, 2023. "Effect of Temperature on Co-Anaerobic Digestion of Chicken Manure and Empty Fruit Bunch: A Kinetic Parametric Study," Sustainability, MDPI, vol. 15(7), pages 1-11, March.
    10. Sun, Hangyu & Yang, Ziyi & Liu, Guangqing & Zhang, Yi & Tong, Yen Wah & Wang, Wen, 2023. "Double-edged effect of tar on anaerobic digestion: Equivalent method and modeling investigation," Energy, Elsevier, vol. 277(C).
    11. Regimantas Dauknys & Aušra Mažeikienė, 2023. "Process Improvement of Biogas Production from Sewage Sludge Applying Iron Oxides-Based Additives," Energies, MDPI, vol. 16(7), pages 1-15, April.
    12. Bi, Shaojie & Qiao, Wei & Xiong, Linpeng & Ricci, Marina & Adani, Fabrizio & Dong, Renjie, 2019. "Effects of organic loading rate on anaerobic digestion of chicken manure under mesophilic and thermophilic conditions," Renewable Energy, Elsevier, vol. 139(C), pages 242-250.
    13. Yang, Ziyi & Sun, Hangyu & Kurbonova, Malikakhon & Zhou, Ling & Arhin, Samuel Gyebi & Papadakis, Vagelis G. & Goula, Maria A. & Liu, Guangqing & Zhang, Yi & Wang, Wen, 2022. "Simultaneous supplementation of magnetite and polyurethane foam carrier can reach a Pareto-optimal point to alleviate ammonia inhibition during anaerobic digestion," Renewable Energy, Elsevier, vol. 189(C), pages 104-116.
    14. Dalke, Rachel & Demro, Delaney & Khalid, Yusra & Wu, Haoran & Urgun-Demirtas, Meltem, 2021. "Current status of anaerobic digestion of food waste in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    15. Ao, Tianjie & Chen, Lin & Zhou, Pan & Liu, Xiaofeng & Li, Dong, 2021. "The role of oxidation-reduction potential as an early warning indicator, and a microbial instability mechanism in a pilot-scale anaerobic mesophilic digestion of chicken manure," Renewable Energy, Elsevier, vol. 179(C), pages 223-232.
    16. Qin, Yujie & Chen, Linyi & Wang, Tongyu & Ren, Junyi & Cao, Yan & Zhou, Shaoqi, 2019. "Impacts of ferric chloride, ferrous chloride and solid retention time on the methane-producing and physicochemical characterization in high-solids sludge anaerobic digestion," Renewable Energy, Elsevier, vol. 139(C), pages 1290-1298.
    17. Xiao, Benyi & Tang, Xinyi & Zhang, Wenzhe & Zhang, Ke & Yang, Tang & Han, Yunping & Liu, Junxin, 2022. "Effects of rice straw ratio on mesophilic and thermophilic anaerobic co-digestion of swine manure and rice straw mixture," Energy, Elsevier, vol. 239(PB).
    18. Sotirios D. Kalamaras & Georgios Vitoulis & Maria Lida Christou & Themistoklis Sfetsas & Spiridon Tziakas & Vassilios Fragos & Petros Samaras & Thomas A. Kotsopoulos, 2021. "The Effect of Ammonia Toxicity on Methane Production of a Full-Scale Biogas Plant—An Estimation Method," Energies, MDPI, vol. 14(16), pages 1-13, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:125:y:2018:i:c:p:915-925. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.