IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v174y2021icp918-927.html
   My bibliography  Save this article

Enhanced properties of phase change material -SiO2-graphene nanocomposite for developing structural–functional integrated cement for solar energy absorption and storage

Author

Listed:
  • Musavi, Seyed Mostapha
  • Barahuie, Farahnaz
  • Irani, Mohsen
  • Safamanesh, Ali
  • Malekpour, Abdurahman

Abstract

The global transition to renewable energy leads to improve energy security, advance economic development, improve access to energy, and mitigate global climate change. Sustainable development is possible by the use of sustainable energy and by ensuring access to affordable, sustainable, and reliable energy. However, the most renewable energy sources are intermittent and this intermittency can be tackled by the use of energy storage. Here, a novel form stable phase change material (PCM) nanocomposite was designed for solar energy absorption and storage in the building. N-nonadecane as PCM, SiO2 nanoparticles as supporting materials, and graphene as thermal conductivity promoter were used to obtain n-nonadecane-SiO2 –graphene nanocomposite. The surface morphology, chemical structure, and thermal features of the produced nanocomposite were examined by scanning electron microscopy (SEM), X-ray diffractometer (XRD), Fourier transform infrared spectrometer (FTIR), and differential scanning calorimetry (DSC). The created nanocomposite can store 120.40 J/g when it undergoes phase change process and it also has outstanding cycling thermal reliability and chemical stability even after 500 cycles. In addition, the solar energy absorption and storage rate of the cement board integrated with obtained nanocomposite was enhanced due to the improved interfacial thermal transfer by graphene compared to the cement-only board under equivalent conditions. Furthermore, the findings of the model room test advocated that the cement wallboard with 10% PCM nanocomposite reduced indoor temperature variations and therefore, this nanocomposite can be used in the renewable solar energy storage systems, thermal comfort applications, and energy management.

Suggested Citation

  • Musavi, Seyed Mostapha & Barahuie, Farahnaz & Irani, Mohsen & Safamanesh, Ali & Malekpour, Abdurahman, 2021. "Enhanced properties of phase change material -SiO2-graphene nanocomposite for developing structural–functional integrated cement for solar energy absorption and storage," Renewable Energy, Elsevier, vol. 174(C), pages 918-927.
  • Handle: RePEc:eee:renene:v:174:y:2021:i:c:p:918-927
    DOI: 10.1016/j.renene.2021.04.140
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121006662
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.04.140?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Jongki & Wi, Seunghwan & Yun, Beom Yeol & Yang, Sungwoong & Park, Ji Hun & Kim, Sumin, 2019. "Development and evaluation of gypsum/shape-stabilization phase change materials using large-capacity vacuum impregnator for thermal energy storage," Applied Energy, Elsevier, vol. 241(C), pages 278-290.
    2. Diaz-Torres, L.A. & Mtz-Enriquez, A.I. & Garcia, C.R. & Coutino-Gonzalez, E. & Oliva, A.I. & Vallejo, M.A. & Cordova, T. & Gomez-Solis, C. & Oliva, J., 2020. "Efficient hydrogen generation by ZnAl2O4 nanoparticles embedded on a flexible graphene composite," Renewable Energy, Elsevier, vol. 152(C), pages 634-643.
    3. Tong, Xuan & Li, Nianqi & Zeng, Min & Wang, Qiuwang, 2019. "Organic phase change materials confined in carbon-based materials for thermal properties enhancement: Recent advancement and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 398-422.
    4. Zhang, Yi & Tao, Wen & Wang, Kehan & Li, Dongxu, 2020. "Analysis of thermal properties of gypsum materials incorporated with microencapsulated phase change materials based on silica," Renewable Energy, Elsevier, vol. 149(C), pages 400-408.
    5. Khadiran, Tumirah & Hussein, Mohd Zobir & Zainal, Zulkarnain & Rusli, Rafeadah, 2015. "Activated carbon derived from peat soil as a framework for the preparation of shape-stabilized phase change material," Energy, Elsevier, vol. 82(C), pages 468-478.
    6. Jiang, Z.Y. & Qu, Z.G., 2019. "Lithium–ion battery thermal management using heat pipe and phase change material during discharge–charge cycle: A comprehensive numerical study," Applied Energy, Elsevier, vol. 242(C), pages 378-392.
    7. Zhang, Zhengguo & Shi, Guoquan & Wang, Shuping & Fang, Xiaoming & Liu, Xiaohong, 2013. "Thermal energy storage cement mortar containing n-octadecane/expanded graphite composite phase change material," Renewable Energy, Elsevier, vol. 50(C), pages 670-675.
    8. Yang, Haiyue & Wang, Siyuan & Wang, Xin & Chao, Weixiang & Wang, Nan & Ding, Xiaolun & Liu, Feng & Yu, Qianqian & Yang, Tinghan & Yang, Zhaolin & Li, Jian & Wang, Chengyu & Li, Guoliang, 2020. "Wood-based composite phase change materials with self-cleaning superhydrophobic surface for thermal energy storage," Applied Energy, Elsevier, vol. 261(C).
    9. Wang, Qingqing & Zhou, Dan & Chen, Yuming & Eames, Philip & Wu, Zhigen, 2020. "Characterization and effects of thermal cycling on the properties of paraffin/expanded graphite composites," Renewable Energy, Elsevier, vol. 147(P1), pages 1131-1138.
    10. Zhang, Guanhua & Yu, Zhenjie & Cui, Guomin & Dou, Binlin & Lu, Wei & Yan, Xiaoyu, 2020. "Fabrication of a novel nano phase change material emulsion with low supercooling and enhanced thermal conductivity," Renewable Energy, Elsevier, vol. 151(C), pages 542-550.
    11. Qian, Tingting & Li, Jinhong, 2018. "Octadecane/C-decorated diatomite composite phase change material with enhanced thermal conductivity as aggregate for developing structural–functional integrated cement for thermal energy storage," Energy, Elsevier, vol. 142(C), pages 234-249.
    12. Li, Wei & Zhang, Rong & Jiang, Nan & Tang, Xiao-fen & Shi, Hai-feng & Zhang, Xing-xiang & Zhang, Yuankai & Dong, Lin & Zhang, Ningxin, 2013. "Composite macrocapsule of phase change materials/expanded graphite for thermal energy storage," Energy, Elsevier, vol. 57(C), pages 607-614.
    13. Zuo, Xiaochao & Li, Jianwen & Zhao, Xiaoguang & Yang, Huaming & Chen, Deliang, 2020. "Emerging paraffin/carbon-coated nanoscroll composite phase change material for thermal energy storage," Renewable Energy, Elsevier, vol. 152(C), pages 579-589.
    14. Sarı, Ahmet & Al-Ahmed, Amir & Bicer, Alper & Al-Sulaiman, Fahad A. & Hekimoğlu, Gökhan, 2019. "Investigation of thermal properties and enhanced energy storage/release performance of silica fume/myristic acid composite doped with carbon nanotubes," Renewable Energy, Elsevier, vol. 140(C), pages 779-788.
    15. Umair, Malik Muhammad & Zhang, Yuang & Iqbal, Kashif & Zhang, Shufen & Tang, Bingtao, 2019. "Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage–A review," Applied Energy, Elsevier, vol. 235(C), pages 846-873.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shijun Wang & Ziyun Cheng & Qiong Liu & Yuwen Huang & Kui Liang & Xing Wang, 2023. "Relationship between Alternated Current Impedance Spectrum and Microstructure of Graphene Enhanced Concrete," Sustainability, MDPI, vol. 15(18), pages 1-14, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Hekimoğlu, Gökhan & Nas, Memduh & Ouikhalfan, Mohammed & Sarı, Ahmet & Tyagi, V.V. & Sharma, R.K. & Kurbetci, Şirin & Saleh, Tawfik A., 2021. "Silica fume/capric acid-stearic acid PCM included-cementitious composite for thermal controlling of buildings: Thermal energy storage and mechanical properties," Energy, Elsevier, vol. 219(C).
    3. Drissi, Sarra & Ling, Tung-Chai & Mo, Kim Hung & Eddhahak, Anissa, 2019. "A review of microencapsulated and composite phase change materials: Alteration of strength and thermal properties of cement-based materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 467-484.
    4. Li, Min & Mu, Boyuan, 2019. "Effect of different dimensional carbon materials on the properties and application of phase change materials: A review," Applied Energy, Elsevier, vol. 242(C), pages 695-715.
    5. Paul, John & Pandey, A.K. & Mishra, Yogeshwar Nath & Said, Zafar & Mishra, Yogendra Kumar & Ma, Zhenjun & Jacob, Jeeja & Kadirgama, K. & Samykano, M. & Tyagi, V.V., 2022. "Nano-enhanced organic form stable PCMs for medium temperature solar thermal energy harvesting: Recent progresses, challenges, and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    6. Ren, Miao & Liu, Yushi & Gao, Xiaojian, 2020. "Incorporation of phase change material and carbon nanofibers into lightweight aggregate concrete for thermal energy regulation in buildings," Energy, Elsevier, vol. 197(C).
    7. Drissi, Sarra & Ling, Tung-Chai & Mo, Kim Hung, 2020. "Thermal performance of a solar energy storage concrete panel incorporating phase change material aggregates developed for thermal regulation in buildings," Renewable Energy, Elsevier, vol. 160(C), pages 817-829.
    8. Ren, Miao & Zhao, Hua & Gao, Xiaojian, 2022. "Effect of modified diatomite based shape-stabilized phase change materials on multiphysics characteristics of thermal storage mortar," Energy, Elsevier, vol. 241(C).
    9. Sung-Young Song & Hwa-Sung Ryu & Sang-Heon Shin & Deuck-Mo Kim & and Won-Jun Park, 2019. "Properties of External Insulation Surface Preparation Mortar Using Expandable Graphite for Fire Resistance," Sustainability, MDPI, vol. 11(23), pages 1-13, December.
    10. Li, Huiqiang & Chen, Huisu & Li, Xiangyu & Sanjayan, Jay G., 2014. "Development of thermal energy storage composites and prevention of PCM leakage," Applied Energy, Elsevier, vol. 135(C), pages 225-233.
    11. Zhang, P. & Xiao, X. & Ma, Z.W., 2016. "A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement," Applied Energy, Elsevier, vol. 165(C), pages 472-510.
    12. Xu, Biwan & Li, Zongjin, 2014. "Paraffin/diatomite/multi-wall carbon nanotubes composite phase change material tailor-made for thermal energy storage cement-based composites," Energy, Elsevier, vol. 72(C), pages 371-380.
    13. Qian, Tingting & Li, Jinhong, 2018. "Octadecane/C-decorated diatomite composite phase change material with enhanced thermal conductivity as aggregate for developing structural–functional integrated cement for thermal energy storage," Energy, Elsevier, vol. 142(C), pages 234-249.
    14. Memon, Shazim Ali, 2014. "Phase change materials integrated in building walls: A state of the art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 870-906.
    15. Chinnasamy, Veerakumar & Heo, Jaehyeok & Jung, Sungyong & Lee, Hoseong & Cho, Honghyun, 2023. "Shape stabilized phase change materials based on different support structures for thermal energy storage applications–A review," Energy, Elsevier, vol. 262(PB).
    16. Liu, Changhui & Xiao, Tong & Zhao, Jiateng & Liu, Qingyi & Sun, Wenjie & Guo, Chenglong & Ali, Hafiz Muhammad & Chen, Xiao & Rao, Zhonghao & Gu, Yanlong, 2023. "Polymer engineering in phase change thermal storage materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    17. Wu, Wenhao & Huang, Xinyu & Li, Kai & Yao, Ruimin & Chen, Renjie & Zou, Ruqiang, 2017. "A functional form-stable phase change composite with high efficiency electro-to-thermal energy conversion," Applied Energy, Elsevier, vol. 190(C), pages 474-480.
    18. Fu, Lulu & Wang, Qianhao & Ye, Rongda & Fang, Xiaoming & Zhang, Zhengguo, 2017. "A calcium chloride hexahydrate/expanded perlite composite with good heat storage and insulation properties for building energy conservation," Renewable Energy, Elsevier, vol. 114(PB), pages 733-743.
    19. Ohayon-Lavi, Avia & Lavi, Adi & Alatawna, Amr & Ruse, Efrat & Ziskind, Gennady & Regev, Oren, 2021. "Graphite-based shape-stabilized composites for phase change material applications," Renewable Energy, Elsevier, vol. 167(C), pages 580-590.
    20. Zhao, Kuan & Wang, Jifen & Xie, Huaqing & Guo, Zhixiong, 2023. "Microencapsulated phase change n-Octadecane with high heat storage for application in building energy conservation," Applied Energy, Elsevier, vol. 329(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:174:y:2021:i:c:p:918-927. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.