IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v172y2021icp71-87.html
   My bibliography  Save this article

Real time experimental performance investigation of a NePCM based photovoltaic thermal system: An energetic and exergetic approach

Author

Listed:
  • Islam, M.M.
  • Hasanuzzaman, M.
  • Rahim, N.A.
  • Pandey, A.K.
  • Rawa, M.
  • Kumar, L.

Abstract

Photovoltaic thermal (PVT) systems have emerged as a well-engineered upgradation of photovoltaic (PV) modules that deliver both electricity and heat simultaneously. However, practicable performance is yet to be realized from these systems on commercial basis. In the present research, nanoparticle enhanced phase change material (NePCM) has been incorporated to improve the thermal and electrical performance of a PVT system. Outdoor experimental investigation of five different systems, namely, PV, PVT, PV-PCM, PVT-PCM and PVT-NePCM has been carried out concurrently under real time Malaysian climatic conditions. Experiments have been conducted at flow rates from 0.5 to 4.0 L/min. Real time temperatures of the ambient, heat transfer fluid (HTF) and PV cell, humidity of air, wind velocity and fluid flow rate have been recorded through a digital data acquisition system. Performance of the systems have been analyzed applying both energy and exergy methods. Results show that PVT-NePCM system raised water outlet temperature by more than 46 °C. This system attained a maximum overall energy efficiency of 85% and a peak exergy efficiency of 12%. Integration of nano composite PCM in thermal regulation of PVT systems will pave the way for efficacious commercialization of these systems because of the possibility of their nighttime applications.

Suggested Citation

  • Islam, M.M. & Hasanuzzaman, M. & Rahim, N.A. & Pandey, A.K. & Rawa, M. & Kumar, L., 2021. "Real time experimental performance investigation of a NePCM based photovoltaic thermal system: An energetic and exergetic approach," Renewable Energy, Elsevier, vol. 172(C), pages 71-87.
  • Handle: RePEc:eee:renene:v:172:y:2021:i:c:p:71-87
    DOI: 10.1016/j.renene.2021.02.169
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121003530
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.02.169?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hazami, Majdi & Riahi, Ali & Mehdaoui, Farah & Nouicer, Omeima & Farhat, Abdelhamid, 2016. "Energetic and exergetic performances analysis of a PV/T (photovoltaic thermal) solar system tested and simulated under to Tunisian (North Africa) climatic conditions," Energy, Elsevier, vol. 107(C), pages 78-94.
    2. Chenni, R. & Makhlouf, M. & Kerbache, T. & Bouzid, A., 2007. "A detailed modeling method for photovoltaic cells," Energy, Elsevier, vol. 32(9), pages 1724-1730.
    3. Agrawal, Basant & Tiwari, G.N., 2010. "Optimizing the energy and exergy of building integrated photovoltaic thermal (BIPVT) systems under cold climatic conditions," Applied Energy, Elsevier, vol. 87(2), pages 417-426, February.
    4. Trisaksri, Visinee & Wongwises, Somchai, 2007. "Critical review of heat transfer characteristics of nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(3), pages 512-523, April.
    5. Sardarabadi, Mohammad & Passandideh-Fard, Mohammad & Zeinali Heris, Saeed, 2014. "Experimental investigation of the effects of silica/water nanofluid on PV/T (photovoltaic thermal units)," Energy, Elsevier, vol. 66(C), pages 264-272.
    6. Park, S.R. & Pandey, A.K. & Tyagi, V.V. & Tyagi, S.K., 2014. "Energy and exergy analysis of typical renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 105-123.
    7. Chow, T.T. & Pei, G. & Fong, K.F. & Lin, Z. & Chan, A.L.S. & Ji, J., 2009. "Energy and exergy analysis of photovoltaic-thermal collector with and without glass cover," Applied Energy, Elsevier, vol. 86(3), pages 310-316, March.
    8. Zhao, Jiaxin & Ma, Tao & Li, Zhenpeng & Song, Aotian, 2019. "Year-round performance analysis of a photovoltaic panel coupled with phase change material," Applied Energy, Elsevier, vol. 245(C), pages 51-64.
    9. Kazemian, Arash & Hosseinzadeh, Mohammad & Sardarabadi, Mohammad & Passandideh-Fard, Mohammad, 2018. "Experimental study of using both ethylene glycol and phase change material as coolant in photovoltaic thermal systems (PVT) from energy, exergy and entropy generation viewpoints," Energy, Elsevier, vol. 162(C), pages 210-223.
    10. Tyagi, V.V. & Panwar, N.L. & Rahim, N.A. & Kothari, Richa, 2012. "Review on solar air heating system with and without thermal energy storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2289-2303.
    11. Li, Zhenpeng & Ma, Tao & Zhao, Jiaxin & Song, Aotian & Cheng, Yuanda, 2019. "Experimental study and performance analysis on solar photovoltaic panel integrated with phase change material," Energy, Elsevier, vol. 178(C), pages 471-486.
    12. Nahar, Afroza & Hasanuzzaman, M. & Rahim, N.A. & Parvin, S., 2019. "Numerical investigation on the effect of different parameters in enhancing heat transfer performance of photovoltaic thermal systems," Renewable Energy, Elsevier, vol. 132(C), pages 284-295.
    13. Chen, J.F. & Zhang, L. & Dai, Y.J., 2018. "Performance analysis and multi-objective optimization of a hybrid photovoltaic/thermal collector for domestic hot water application," Energy, Elsevier, vol. 143(C), pages 500-516.
    14. Daungthongsuk, Weerapun & Wongwises, Somchai, 2007. "A critical review of convective heat transfer of nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 797-817, June.
    15. Radziemska, E., 2003. "The effect of temperature on the power drop in crystalline silicon solar cells," Renewable Energy, Elsevier, vol. 28(1), pages 1-12.
    16. Kumar, Anil & Baredar, Prashant & Qureshi, Uzma, 2015. "Historical and recent development of photovoltaic thermal (PVT) technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1428-1436.
    17. Fayaz, H. & Rahim, N.A. & Hasanuzzaman, M. & Nasrin, R. & Rivai, A., 2019. "Numerical and experimental investigation of the effect of operating conditions on performance of PVT and PVT-PCM," Renewable Energy, Elsevier, vol. 143(C), pages 827-841.
    18. Hossain, M.S. & Pandey, A.K. & Selvaraj, Jeyraj & Rahim, Nasrudin Abd & Islam, M.M. & Tyagi, V.V., 2019. "Two side serpentine flow based photovoltaic-thermal-phase change materials (PVT-PCM) system: Energy, exergy and economic analysis," Renewable Energy, Elsevier, vol. 136(C), pages 1320-1336.
    19. Hosseinzadeh, Mohammad & Sardarabadi, Mohammad & Passandideh-Fard, Mohammad, 2018. "Energy and exergy analysis of nanofluid based photovoltaic thermal system integrated with phase change material," Energy, Elsevier, vol. 147(C), pages 636-647.
    20. Qiu, Zhongzhu & Zhao, Xudong & Li, Peng & Zhang, Xingxing & Ali, Samira & Tan, Junyi, 2015. "Theoretical investigation of the energy performance of a novel MPCM (Microencapsulated Phase Change Material) slurry based PV/T module," Energy, Elsevier, vol. 87(C), pages 686-698.
    21. Gaur, Ankita & Ménézo, Christophe & Giroux--Julien, Stéphanie, 2017. "Numerical studies on thermal and electrical performance of a fully wetted absorber PVT collector with PCM as a storage medium," Renewable Energy, Elsevier, vol. 109(C), pages 168-187.
    22. Guarracino, Ilaria & Freeman, James & Ramos, Alba & Kalogirou, Soteris A. & Ekins-Daukes, Nicholas J. & Markides, Christos N., 2019. "Systematic testing of hybrid PV-thermal (PVT) solar collectors in steady-state and dynamic outdoor conditions," Applied Energy, Elsevier, vol. 240(C), pages 1014-1030.
    23. Kumar, Laveet & Hasanuzzaman, M. & Rahim, N.A. & Islam, M.M., 2021. "Modeling, simulation and outdoor experimental performance analysis of a solar-assisted process heating system for industrial process heat," Renewable Energy, Elsevier, vol. 164(C), pages 656-673.
    24. Sardarabadi, Mohammad & Hosseinzadeh, Mohammad & Kazemian, Arash & Passandideh-Fard, Mohammad, 2017. "Experimental investigation of the effects of using metal-oxides/water nanofluids on a photovoltaic thermal system (PVT) from energy and exergy viewpoints," Energy, Elsevier, vol. 138(C), pages 682-695.
    25. Eisapour, M. & Eisapour, Amir Hossein & Hosseini, M.J. & Talebizadehsardari, P., 2020. "Exergy and energy analysis of wavy tubes photovoltaic-thermal systems using microencapsulated PCM nano-slurry coolant fluid," Applied Energy, Elsevier, vol. 266(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ronelly De Souza & Melchiorre Casisi & Diego Micheli & Mauro Reini, 2021. "A Review of Small–Medium Combined Heat and Power (CHP) Technologies and Their Role within the 100% Renewable Energy Systems Scenario," Energies, MDPI, vol. 14(17), pages 1-30, August.
    2. Ghazy, Mohamed & Ibrahim, E.M.M. & Mohamed, A.S.A. & Askalany, Ahmed A., 2022. "Experimental investigation of hybrid photovoltaic solar thermal collector (PV/T)-adsorption desalination system in hot weather conditions," Energy, Elsevier, vol. 254(PB).
    3. MD Shouquat Hossain & Laveet Kumar & Adeel Arshad & Jeyraj Selvaraj & A. K. Pandey & Nasrudin Abd Rahim, 2023. "A Comparative Investigation on Solar PVT- and PVT-PCM-Based Collector Constancy Performance," Energies, MDPI, vol. 16(5), pages 1-26, February.
    4. Amged Al Ezzi & Miqdam T. Chaichan & Hasan S. Majdi & Ali H. A. Al-Waeli & Hussein A. Kazem & Kamaruzzaman Sopian & Mohammed A. Fayad & Hayder A. Dhahad & Talal Yusaf, 2022. "Nano-Iron Oxide-Ethylene Glycol-Water Nanofluid Based Photovoltaic Thermal (PV/T) System with Spiral Flow Absorber: An Energy and Exergy Analysis," Energies, MDPI, vol. 15(11), pages 1-19, May.
    5. Wan Afin Fadzlin & Md. Hasanuzzaman & Nasrudin Abd Rahim & Norridah Amin & Zafar Said, 2022. "Global Challenges of Current Building-Integrated Solar Water Heating Technologies and Its Prospects: A Comprehensive Review," Energies, MDPI, vol. 15(14), pages 1-42, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumar, Laveet & Hasanuzzaman, M. & Rahim, N.A. & Islam, M.M., 2021. "Modeling, simulation and outdoor experimental performance analysis of a solar-assisted process heating system for industrial process heat," Renewable Energy, Elsevier, vol. 164(C), pages 656-673.
    2. Yu, Qinghua & Chen, Xi & Yang, Hongxing, 2021. "Research progress on utilization of phase change materials in photovoltaic/thermal systems: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    3. Pang, Wei & Cui, Yanan & Zhang, Qian & Wilson, Gregory.J. & Yan, Hui, 2020. "A comparative analysis on performances of flat plate photovoltaic/thermal collectors in view of operating media, structural designs, and climate conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    4. Kazemian, Arash & Hosseinzadeh, Mohammad & Sardarabadi, Mohammad & Passandideh-Fard, Mohammad, 2018. "Experimental study of using both ethylene glycol and phase change material as coolant in photovoltaic thermal systems (PVT) from energy, exergy and entropy generation viewpoints," Energy, Elsevier, vol. 162(C), pages 210-223.
    5. Ma, Tao & Li, Meng & Kazemian, Arash, 2020. "Photovoltaic thermal module and solar thermal collector connected in series to produce electricity and high-grade heat simultaneously," Applied Energy, Elsevier, vol. 261(C).
    6. Reji Kumar, R. & Samykano, M. & Pandey, A.K. & Kadirgama, K. & Tyagi, V.V., 2020. "Phase change materials and nano-enhanced phase change materials for thermal energy storage in photovoltaic thermal systems: A futuristic approach and its technical challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    7. Yazdanifard, Farideh & Ameri, Mehran, 2018. "Exergetic advancement of photovoltaic/thermal systems (PV/T): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 529-553.
    8. Kazemian, Arash & Khatibi, Meysam & Reza Maadi, Seyed & Ma, Tao, 2021. "Performance optimization of a nanofluid-based photovoltaic thermal system integrated with nano-enhanced phase change material," Applied Energy, Elsevier, vol. 295(C).
    9. Tariq, Rasikh & Xamán, J. & Bassam, A. & Ricalde, Luis J. & Soberanis, M.A. Escalante, 2020. "Multidimensional assessment of a photovoltaic air collector integrated phase changing material considering Mexican climatic conditions," Energy, Elsevier, vol. 209(C).
    10. Muhammad Aftab Rafiq & Liguo Zhang & Chih-Chun Kung, 2022. "A Techno-Economic Analysis of Solar Energy Developmental Under Competing Technologies: A Case Study in Jiangxi, China," SAGE Open, , vol. 12(2), pages 21582440221, June.
    11. Cui, Yuanlong & Zhu, Jie & Zhang, Fan & Shao, Yiming & Xue, Yibing, 2022. "Current status and future development of hybrid PV/T system with PCM module: 4E (energy, exergy, economic and environmental) assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    12. Humphrey ADUN & Mustapha Mukhtar & Micheal Adedeji & Terfa Agwa & Kefas Hyelda Ibrahim & Olusola Bamisile & Mustafa Dagbasi, 2021. "Synthesis and Application of Ternary Nanofluid for Photovoltaic-Thermal System: Comparative Analysis of Energy and Exergy Performance with Single and Hybrid Nanofluids," Energies, MDPI, vol. 14(15), pages 1-26, July.
    13. Gao, Yuanzhi & Hu, Guohao & Zhang, Yuzhuo & Zhang, Xiaosong, 2022. "An experimental study of a hybrid photovoltaic thermal system based on ethanol phase change self-circulation technology: Energy and exergy analysis," Energy, Elsevier, vol. 238(PA).
    14. Hosseinzadeh, Mohammad & Sardarabadi, Mohammad & Passandideh-Fard, Mohammad, 2018. "Energy and exergy analysis of nanofluid based photovoltaic thermal system integrated with phase change material," Energy, Elsevier, vol. 147(C), pages 636-647.
    15. Sardarabadi, Mohammad & Hosseinzadeh, Mohammad & Kazemian, Arash & Passandideh-Fard, Mohammad, 2017. "Experimental investigation of the effects of using metal-oxides/water nanofluids on a photovoltaic thermal system (PVT) from energy and exergy viewpoints," Energy, Elsevier, vol. 138(C), pages 682-695.
    16. Zhou, Yuekuan & Zheng, Siqian, 2020. "Multi-level uncertainty optimisation on phase change materials integrated renewable systems with hybrid ventilations and active cooling," Energy, Elsevier, vol. 202(C).
    17. V. Tirupati Rao & Y. Raja Sekhar, 2023. "Hybrid Photovoltaic/Thermal (PVT) Collector Systems With Different Absorber Configurations For Thermal Management – A Review," Energy & Environment, , vol. 34(3), pages 690-735, May.
    18. Shahsavar, Amin & Alwaeli, Ali H.A. & Azimi, Neda & Rostami, Shirin & Sopian, Kamaruzzaman & Arıcı, Müslüm & Estellé, Patrice & Nižetić, Sandro & Kasaeian, Alibakhsh & Ali, Hafiz Muhammad & Ma, Zhenju, 2022. "Exergy studies in water-based and nanofluid-based photovoltaic/thermal collectors: Status and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    19. Rajvikram Madurai Elavarasan & Karthikeyan Velmurugan & Umashankar Subramaniam & A Rakesh Kumar & Dhafer Almakhles, 2020. "Experimental Investigations Conducted for the Characteristic Study of OM29 Phase Change Material and Its Incorporation in Photovoltaic Panel," Energies, MDPI, vol. 13(4), pages 1-18, February.
    20. Hooshmandzade, Niusha & Motevali, Ali & Reza Mousavi Seyedi, Seyed & Biparva, Pouria, 2021. "Influence of single and hybrid water-based nanofluids on performance of microgrid photovoltaic/thermal system," Applied Energy, Elsevier, vol. 304(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:172:y:2021:i:c:p:71-87. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.