IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v169y2021icp1351-1372.html
   My bibliography  Save this article

Toward a highly efficient photovoltaic thermal module: Energy and exergy analysis

Author

Listed:
  • Eisapour, Amir Hossein
  • Eisapour, M.
  • Hosseini, M.J.
  • Shafaghat, A.H.
  • Talebizadeh Sardari, P.
  • Ranjbar, A.A.

Abstract

To obtain maximum exergy and energy efficiencies of photovoltaic-thermal (PV-T) systems, innovative configurations of coolant tubes are proposed and simulated numerically. The tubes’ configuration is modified using non-uniform wavy tube concept, which forms different styles, including ascending and descending amplitude of coolant tubes. Besides, the influences of geometrical parameters, extending PV panel length, sensitivity analysis on the operating conditions and a comprehensive investigation of different types of heat transfer fluids are analysed for the innovative systems. The results demonstrate that the PV-T performance develops in terms of electrical, thermal, and exergy efficiencies using ascending wavy tubes compared with straight, uniform wavy and descending wavy tubes. The electrical and thermal efficiencies are promoted from 10.94% to 61.04% for the straight tubes to 11.32% and 65.21%, respectively, for the system in which ascending wavy tubes are utilised. A comprehensive study of different coolant fluids proves that when SiC and MPCM-28 are simultaneously employed, the best cooling fluid is achieved, leading to a 0.4% higher electrical efficiency than the case in which water is used.

Suggested Citation

  • Eisapour, Amir Hossein & Eisapour, M. & Hosseini, M.J. & Shafaghat, A.H. & Talebizadeh Sardari, P. & Ranjbar, A.A., 2021. "Toward a highly efficient photovoltaic thermal module: Energy and exergy analysis," Renewable Energy, Elsevier, vol. 169(C), pages 1351-1372.
  • Handle: RePEc:eee:renene:v:169:y:2021:i:c:p:1351-1372
    DOI: 10.1016/j.renene.2021.01.110
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121001178
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.01.110?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chai, Luxiao & Wang, Xiaodong & Wu, Dezhen, 2015. "Development of bifunctional microencapsulated phase change materials with crystalline titanium dioxide shell for latent-heat storage and photocatalytic effectiveness," Applied Energy, Elsevier, vol. 138(C), pages 661-674.
    2. Bai, Fanfei & Chen, Mingbiao & Song, Wenji & Yu, Qinghua & Li, Yongliang & Feng, Ziping & Ding, Yulong, 2019. "Investigation of thermal management for lithium-ion pouch battery module based on phase change slurry and mini channel cooling plate," Energy, Elsevier, vol. 167(C), pages 561-574.
    3. Shahsavar, Amin & Eisapour, Mehdi & Talebizadehsardari, Pouyan, 2020. "Experimental evaluation of novel photovoltaic/thermal systems using serpentine cooling tubes with different cross-sections of circular, triangular and rectangular," Energy, Elsevier, vol. 208(C).
    4. Oliva H., Sebastian & Passey, Rob & Abdullah, Md Abu, 2019. "A semi-empirical financial assessment of combining residential photovoltaics, energy efficiency and battery storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 206-214.
    5. Kazemian, Arash & Salari, Ali & Hakkaki-Fard, Ali & Ma, Tao, 2019. "Numerical investigation and parametric analysis of a photovoltaic thermal system integrated with phase change material," Applied Energy, Elsevier, vol. 238(C), pages 734-746.
    6. Lotfi, Babak & Sundén, Bengt & Wang, Qiuwang, 2016. "An investigation of the thermo-hydraulic performance of the smooth wavy fin-and-elliptical tube heat exchangers utilizing new type vortex generators," Applied Energy, Elsevier, vol. 162(C), pages 1282-1302.
    7. Guarracino, Ilaria & Freeman, James & Ramos, Alba & Kalogirou, Soteris A. & Ekins-Daukes, Nicholas J. & Markides, Christos N., 2019. "Systematic testing of hybrid PV-thermal (PVT) solar collectors in steady-state and dynamic outdoor conditions," Applied Energy, Elsevier, vol. 240(C), pages 1014-1030.
    8. Herrando, María & Ramos, Alba & Zabalza, Ignacio & Markides, Christos N., 2019. "A comprehensive assessment of alternative absorber-exchanger designs for hybrid PVT-water collectors," Applied Energy, Elsevier, vol. 235(C), pages 1583-1602.
    9. Eisapour, M. & Eisapour, Amir Hossein & Hosseini, M.J. & Talebizadehsardari, P., 2020. "Exergy and energy analysis of wavy tubes photovoltaic-thermal systems using microencapsulated PCM nano-slurry coolant fluid," Applied Energy, Elsevier, vol. 266(C).
    10. Fu, Huide & Li, Guiqiang & Li, Fubing, 2019. "Performance comparison of photovoltaic/thermal solar water heating systems with direct-coupled photovoltaic pump, traditional pump and natural circulation," Renewable Energy, Elsevier, vol. 136(C), pages 463-472.
    11. Bhimwal, Mahesh Kumar & Gangotri, K.M., 2011. "A comparative study on the performance of photogalvanic cells with different photosensitizers for solar energy conversion and storage: D-Xylose-NaLS systems," Energy, Elsevier, vol. 36(2), pages 1324-1331.
    12. Bornatico, Raffaele & Pfeiffer, Michael & Witzig, Andreas & Guzzella, Lino, 2012. "Optimal sizing of a solar thermal building installation using particle swarm optimization," Energy, Elsevier, vol. 41(1), pages 31-37.
    13. Ma, Tao & Zhao, Jiaxin & Li, Zhenpeng, 2018. "Mathematical modelling and sensitivity analysis of solar photovoltaic panel integrated with phase change material," Applied Energy, Elsevier, vol. 228(C), pages 1147-1158.
    14. Fudholi, Ahmad & Razali, Nur Farhana Mohd & Yazdi, Mohammad H. & Ibrahim, Adnan & Ruslan, Mohd Hafidz & Othman, Mohd Yusof & Sopian, Kamaruzzaman, 2019. "TiO2/water-based photovoltaic thermal (PVT) collector: Novel theoretical approach," Energy, Elsevier, vol. 183(C), pages 305-314.
    15. Beath, Andrew C., 2012. "Industrial energy usage in Australia and the potential for implementation of solar thermal heat and power," Energy, Elsevier, vol. 43(1), pages 261-272.
    16. Tomar, Vivek & Norton, Brian & Tiwari, G.N., 2019. "A novel approach towards investigating the performance of different PVT configurations integrated on test cells: An experimental study," Renewable Energy, Elsevier, vol. 137(C), pages 93-108.
    17. Wajs, Jan & Golabek, Aleksandra & Bochniak, Roksana & Mikielewicz, Dariusz, 2020. "Air-cooled photovoltaic roof tile as an example of the BIPVT system – An experimental study on the energy and exergy performance," Energy, Elsevier, vol. 197(C).
    18. Nasrin, R. & Rahim, N.A. & Fayaz, H. & Hasanuzzaman, M., 2018. "Water/MWCNT nanofluid based cooling system of PVT: Experimental and numerical research," Renewable Energy, Elsevier, vol. 121(C), pages 286-300.
    19. Fayaz, H. & Rahim, N.A. & Hasanuzzaman, M. & Nasrin, R. & Rivai, A., 2019. "Numerical and experimental investigation of the effect of operating conditions on performance of PVT and PVT-PCM," Renewable Energy, Elsevier, vol. 143(C), pages 827-841.
    20. Ma, Tao & Yang, Hongxing & Zhang, Yinping & Lu, Lin & Wang, Xin, 2015. "Using phase change materials in photovoltaic systems for thermal regulation and electrical efficiency improvement: A review and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1273-1284.
    21. Sardarabadi, Mohammad & Hosseinzadeh, Mohammad & Kazemian, Arash & Passandideh-Fard, Mohammad, 2017. "Experimental investigation of the effects of using metal-oxides/water nanofluids on a photovoltaic thermal system (PVT) from energy and exergy viewpoints," Energy, Elsevier, vol. 138(C), pages 682-695.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bezaatpour, Javad & Ghiasirad, Hamed & Bezaatpour, Mojtaba & Ghaebi, Hadi, 2022. "Towards optimal design of photovoltaic/thermal facades: Module-based assessment of thermo-electrical performance, exergy efficiency and wind loads," Applied Energy, Elsevier, vol. 325(C).
    2. Kuczynski, Waldemar & Chliszcz, Katarzyna, 2023. "Energy and exergy analysis of photovoltaic panels in northern Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eisapour, M. & Eisapour, Amir Hossein & Hosseini, M.J. & Talebizadehsardari, P., 2020. "Exergy and energy analysis of wavy tubes photovoltaic-thermal systems using microencapsulated PCM nano-slurry coolant fluid," Applied Energy, Elsevier, vol. 266(C).
    2. Liu, Liu & Niu, Jianlei & Wu, Jian-Yong, 2023. "Improving energy efficiency of photovoltaic/thermal systems by cooling with PCM nano-emulsions: An indoor experimental study," Renewable Energy, Elsevier, vol. 203(C), pages 568-582.
    3. Kumar, Laveet & Hasanuzzaman, M. & Rahim, N.A. & Islam, M.M., 2021. "Modeling, simulation and outdoor experimental performance analysis of a solar-assisted process heating system for industrial process heat," Renewable Energy, Elsevier, vol. 164(C), pages 656-673.
    4. Pang, Wei & Cui, Yanan & Zhang, Qian & Wilson, Gregory.J. & Yan, Hui, 2020. "A comparative analysis on performances of flat plate photovoltaic/thermal collectors in view of operating media, structural designs, and climate conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    5. Maadi, Seyed Reza & Navegi, Ali & Solomin, Evgeny & Ahn, Ho Seon & Wongwises, Somchai & Mahian, Omid, 2021. "Performance improvement of a photovoltaic-thermal system using a wavy-strip insert with and without nanofluid," Energy, Elsevier, vol. 234(C).
    6. Shahsavar, Amin & Jha, Prabhakar & Arici, Muslum & Kefayati, Gholamreza, 2021. "A comparative experimental investigation of energetic and exergetic performances of water/magnetite nanofluid-based photovoltaic/thermal system equipped with finned and unfinned collectors," Energy, Elsevier, vol. 220(C).
    7. Hooshmandzade, Niusha & Motevali, Ali & Reza Mousavi Seyedi, Seyed & Biparva, Pouria, 2021. "Influence of single and hybrid water-based nanofluids on performance of microgrid photovoltaic/thermal system," Applied Energy, Elsevier, vol. 304(C).
    8. Shahsavar, Amin & Eisapour, Mehdi & Talebizadehsardari, Pouyan, 2020. "Experimental evaluation of novel photovoltaic/thermal systems using serpentine cooling tubes with different cross-sections of circular, triangular and rectangular," Energy, Elsevier, vol. 208(C).
    9. Islam, M.M. & Hasanuzzaman, M. & Rahim, N.A. & Pandey, A.K. & Rawa, M. & Kumar, L., 2021. "Real time experimental performance investigation of a NePCM based photovoltaic thermal system: An energetic and exergetic approach," Renewable Energy, Elsevier, vol. 172(C), pages 71-87.
    10. Shahsavar, Amin & Alwaeli, Ali H.A. & Azimi, Neda & Rostami, Shirin & Sopian, Kamaruzzaman & Arıcı, Müslüm & Estellé, Patrice & Nižetić, Sandro & Kasaeian, Alibakhsh & Ali, Hafiz Muhammad & Ma, Zhenju, 2022. "Exergy studies in water-based and nanofluid-based photovoltaic/thermal collectors: Status and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    11. Ma, Tao & Li, Meng & Kazemian, Arash, 2020. "Photovoltaic thermal module and solar thermal collector connected in series to produce electricity and high-grade heat simultaneously," Applied Energy, Elsevier, vol. 261(C).
    12. Yu, Qinghua & Chen, Xi & Yang, Hongxing, 2021. "Research progress on utilization of phase change materials in photovoltaic/thermal systems: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    13. V. Tirupati Rao & Y. Raja Sekhar, 2023. "Hybrid Photovoltaic/Thermal (PVT) Collector Systems With Different Absorber Configurations For Thermal Management – A Review," Energy & Environment, , vol. 34(3), pages 690-735, May.
    14. Kazemian, Arash & Khatibi, Meysam & Reza Maadi, Seyed & Ma, Tao, 2021. "Performance optimization of a nanofluid-based photovoltaic thermal system integrated with nano-enhanced phase change material," Applied Energy, Elsevier, vol. 295(C).
    15. Calise, Francesco & Dentice d'Accadia, Massimo & Palombo, Adolfo & Vanoli, Laura, 2013. "Dynamic simulation of a novel high-temperature solar trigeneration system based on concentrating photovoltaic/thermal collectors," Energy, Elsevier, vol. 61(C), pages 72-86.
    16. Li, Meng & Ma, Tao & Liu, Jiaying & Li, Huanhuan & Xu, Yaling & Gu, Wenbo & Shen, Lu, 2019. "Numerical and experimental investigation of precast concrete facade integrated with solar photovoltaic panels," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    17. Tariq, Rasikh & Xamán, J. & Bassam, A. & Ricalde, Luis J. & Soberanis, M.A. Escalante, 2020. "Multidimensional assessment of a photovoltaic air collector integrated phase changing material considering Mexican climatic conditions," Energy, Elsevier, vol. 209(C).
    18. Cao, Yan & Sinaga, Nazaruddin & Pourhedayat, Samira & Dizaji, Hamed Sadighi, 2021. "Innovative integration of solar chimney ventilator, solar panel and phase change material; under real transient weather condition of Hong Kong through different months," Renewable Energy, Elsevier, vol. 174(C), pages 865-878.
    19. Adibpour, S. & Raisi, A. & Ghasemi, B. & Sajadi, A.R. & Rosengarten, G., 2021. "Experimental investigation of the performance of a sun tracking photovoltaic panel with Phase Change Material," Renewable Energy, Elsevier, vol. 165(P1), pages 321-333.
    20. Khani, M.S. & Baneshi, M. & Eslami, M., 2019. "Bi-objective optimization of photovoltaic-thermal (PV/T) solar collectors according to various weather conditions using genetic algorithm: A numerical modeling," Energy, Elsevier, vol. 189(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:169:y:2021:i:c:p:1351-1372. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.