IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v163y2021icp1508-1522.html
   My bibliography  Save this article

Cell voltage static-dynamic modeling of a PEM electrolyzer based on adaptive parameters: Development and experimental validation

Author

Listed:
  • Hernández-Gómez, Ángel
  • Ramirez, Victor
  • Guilbert, Damien
  • Saldivar, Belem

Abstract

This article aims to propose and experimentally validate a static-dynamic electrical model of a proton exchange membrane (PEM) electrolyzer. The originality of this work concerns the cell voltage modeling according to static and dynamic operations. Indeed, the cells of the PEM electrolyzer may be subjected to degradations due to the operating conditions and current ripple generated by power electronics. Hence, cell voltage response and efficiency may be affected. For this reason, it is crucial to model each cell voltage to investigate the degradation and wear effects mainly caused by the dynamic operating conditions met when coupling with renewable energy sources and current ripple from power electronics. To develop an accurate model, static and dynamic operations are investigated on a commercial-400 W PEM electrolyzer stack. To enhance the accuracy of the model in replicating the real behavior of the electrolyzer, the parameters of the model are adapted according to the input current. The comparison between the experimental data and the developed model has enabled confirming the effectiveness of the model to reproduce the cell voltage static and dynamic behavior according to the input current.

Suggested Citation

  • Hernández-Gómez, Ángel & Ramirez, Victor & Guilbert, Damien & Saldivar, Belem, 2021. "Cell voltage static-dynamic modeling of a PEM electrolyzer based on adaptive parameters: Development and experimental validation," Renewable Energy, Elsevier, vol. 163(C), pages 1508-1522.
  • Handle: RePEc:eee:renene:v:163:y:2021:i:c:p:1508-1522
    DOI: 10.1016/j.renene.2020.09.106
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120315317
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.09.106?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Chi-Yuan & Chen, Chia-Hung & Li, Shih-Chun & Wang, Yu-Syuan, 2019. "Development and application of flexible integrated microsensor as real-time monitoring tool in proton exchange membrane water electrolyzer," Renewable Energy, Elsevier, vol. 143(C), pages 906-914.
    2. Khatib, F.N. & Wilberforce, Tabbi & Ijaodola, Oluwatosin & Ogungbemi, Emmanuel & El-Hassan, Zaki & Durrant, A. & Thompson, J. & Olabi, A.G., 2019. "Material degradation of components in polymer electrolyte membrane (PEM) electrolytic cell and mitigation mechanisms: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 1-14.
    3. Arsalis, Alexandros & Alexandrou, Andreas N. & Georghiou, George E., 2018. "Thermoeconomic modeling of a completely autonomous, zero-emission photovoltaic system with hydrogen storage for residential applications," Renewable Energy, Elsevier, vol. 126(C), pages 354-369.
    4. Mohammadi, Amin & Mehrpooya, Mehdi, 2018. "A comprehensive review on coupling different types of electrolyzer to renewable energy sources," Energy, Elsevier, vol. 158(C), pages 632-655.
    5. Marino, C. & Nucara, A. & Panzera, M.F. & Pietrafesa, M. & Varano, V., 2019. "Energetic and economic analysis of a stand alone photovoltaic system with hydrogen storage," Renewable Energy, Elsevier, vol. 142(C), pages 316-329.
    6. Tjarks, Geert & Gibelhaus, Andrej & Lanzerath, Franz & Müller, Martin & Bardow, André & Stolten, Detlef, 2018. "Energetically-optimal PEM electrolyzer pressure in power-to-gas plants," Applied Energy, Elsevier, vol. 218(C), pages 192-198.
    7. Olivier, Pierre & Bourasseau, Cyril & Bouamama, Pr. Belkacem, 2017. "Low-temperature electrolysis system modelling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 280-300.
    8. Nikolaidis, Pavlos & Poullikkas, Andreas, 2017. "A comparative overview of hydrogen production processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 597-611.
    9. Damien Guilbert & Gianpaolo Vitale, 2019. "Dynamic Emulation of a PEM Electrolyzer by Time Constant Based Exponential Model," Energies, MDPI, vol. 12(4), pages 1-17, February.
    10. Espinosa-López, Manuel & Darras, Christophe & Poggi, Philippe & Glises, Raynal & Baucour, Philippe & Rakotondrainibe, André & Besse, Serge & Serre-Combe, Pierre, 2018. "Modelling and experimental validation of a 46 kW PEM high pressure water electrolyzer," Renewable Energy, Elsevier, vol. 119(C), pages 160-173.
    11. Toghyani, S. & Afshari, E. & Baniasadi, E. & Shadloo, M.S., 2019. "Energy and exergy analyses of a nanofluid based solar cooling and hydrogen production combined system," Renewable Energy, Elsevier, vol. 141(C), pages 1013-1025.
    12. Mehrjerdi, Hasan, 2020. "Peer-to-peer home energy management incorporating hydrogen storage system and solar generating units," Renewable Energy, Elsevier, vol. 156(C), pages 183-192.
    13. Abdin, Zainul & Zafaranloo, Ali & Rafiee, Ahmad & Mérida, Walter & Lipiński, Wojciech & Khalilpour, Kaveh R., 2020. "Hydrogen as an energy vector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    14. Ruuskanen, Vesa & Koponen, Joonas & Sillanpää, Teemu & Huoman, Kimmo & Kosonen, Antti & Niemelä, Markku & Ahola, Jero, 2018. "Design and implementation of a power-hardware-in-loop simulator for water electrolysis emulation," Renewable Energy, Elsevier, vol. 119(C), pages 106-115.
    15. Melika Hinaje & Stéphane Raël & Panee Noiying & Dinh An Nguyen & Bernard Davat, 2012. "An Equivalent Electrical Circuit Model of Proton Exchange Membrane Fuel Cells Based on Mathematical Modelling," Energies, MDPI, vol. 5(8), pages 1-21, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Bowen & Ni, Meng & Zhang, Shiye & Liu, Zhi & Jiang, Shangfeng & Zhang, Longhai & Zhou, Feikun & Jiao, Kui, 2023. "Two-phase analytical modeling and intelligence parameter estimation of proton exchange membrane electrolyzer for hydrogen production," Renewable Energy, Elsevier, vol. 211(C), pages 202-213.
    2. Makhsoos, Ashkan & Kandidayeni, Mohsen & Boulon, Loïc & Pollet, Bruno G., 2023. "A comparative analysis of single and modular proton exchange membrane water electrolyzers for green hydrogen production- a case study in Trois-Rivières," Energy, Elsevier, vol. 282(C).
    3. Sumit Sood & Om Prakash & Mahdi Boukerdja & Jean-Yves Dieulot & Belkacem Ould-Bouamama & Mathieu Bressel & Anne-Lise Gehin, 2020. "Generic Dynamical Model of PEM Electrolyser under Intermittent Sources," Energies, MDPI, vol. 13(24), pages 1-34, December.
    4. Ahmad Alzahrani & Senthil Kumar Ramu & Gunapriya Devarajan & Indragandhi Vairavasundaram & Subramaniyaswamy Vairavasundaram, 2022. "A Review on Hydrogen-Based Hybrid Microgrid System: Topologies for Hydrogen Energy Storage, Integration, and Energy Management with Solar and Wind Energy," Energies, MDPI, vol. 15(21), pages 1-32, October.
    5. Taehyung Koo & Rockkil Ko & Dongwoo Ha & Jaeyoung Han, 2023. "Development of Model-Based PEM Water Electrolysis HILS (Hardware-in-the-Loop Simulation) System for State Evaluation and Fault Detection," Energies, MDPI, vol. 16(8), pages 1-18, April.
    6. Zhang, Hong & Yuan, Tiejiang, 2022. "Optimization and economic evaluation of a PEM electrolysis system considering its degradation in variable-power operations," Applied Energy, Elsevier, vol. 324(C).
    7. Li, Huabin & Tao, Ye & Zhang, Yang & Fu, Hong, 2022. "Two-objective optimization of a hybrid solar-geothermal system with thermal energy storage for power, hydrogen and freshwater production based on transcritical CO2 cycle," Renewable Energy, Elsevier, vol. 183(C), pages 51-66.
    8. Gallo, María Angélica & García Clúa, José Gabriel, 2023. "Sizing and analytical optimization of an alkaline water electrolyzer powered by a grid-assisted wind turbine to minimize grid power exchange," Renewable Energy, Elsevier, vol. 216(C).
    9. Frank Gambou & Damien Guilbert & Michel Zasadzinski & Hugues Rafaralahy, 2022. "A Comprehensive Survey of Alkaline Electrolyzer Modeling: Electrical Domain and Specific Electrolyte Conductivity," Energies, MDPI, vol. 15(9), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peláez-Peláez, Sofía & Colmenar-Santos, Antonio & Pérez-Molina, Clara & Rosales, Ana-Esther & Rosales-Asensio, Enrique, 2021. "Techno-economic analysis of a heat and power combination system based on hybrid photovoltaic-fuel cell systems using hydrogen as an energy vector," Energy, Elsevier, vol. 224(C).
    2. Maestre, V.M. & Ortiz, A. & Ortiz, I., 2021. "Challenges and prospects of renewable hydrogen-based strategies for full decarbonization of stationary power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    3. Dang, Jian & Yang, Fuyuan & Li, Yangyang & Zhao, Yingpeng & Ouyang, Minggao & Hu, Song, 2022. "Experiments and microsimulation of high-pressure single-cell PEM electrolyzer," Applied Energy, Elsevier, vol. 321(C).
    4. Mahmoudan, Alireza & Esmaeilion, Farbod & Hoseinzadeh, Siamak & Soltani, Madjid & Ahmadi, Pouria & Rosen, Marc, 2022. "A geothermal and solar-based multigeneration system integrated with a TEG unit: Development, 3E analyses, and multi-objective optimization," Applied Energy, Elsevier, vol. 308(C).
    5. Qureshi, Fazil & Yusuf, Mohammad & Kamyab, Hesam & Vo, Dai-Viet N. & Chelliapan, Shreeshivadasan & Joo, Sang-Woo & Vasseghian, Yasser, 2022. "Latest eco-friendly avenues on hydrogen production towards a circular bioeconomy: Currents challenges, innovative insights, and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Taehyung Koo & Rockkil Ko & Dongwoo Ha & Jaeyoung Han, 2023. "Development of Model-Based PEM Water Electrolysis HILS (Hardware-in-the-Loop Simulation) System for State Evaluation and Fault Detection," Energies, MDPI, vol. 16(8), pages 1-18, April.
    7. Damien Guilbert & Gianpaolo Vitale, 2019. "Dynamic Emulation of a PEM Electrolyzer by Time Constant Based Exponential Model," Energies, MDPI, vol. 12(4), pages 1-17, February.
    8. Liu, Hongwei & Ren, He & Gu, Yajing & Lin, Yonggang & Hu, Weifei & Song, Jiajun & Yang, Jinhong & Zhu, Zengxin & Li, Wei, 2023. "Design and on-site implementation of an off-grid marine current powered hydrogen production system," Applied Energy, Elsevier, vol. 330(PB).
    9. Lin, Haiyang & Wu, Qiuwei & Chen, Xinyu & Yang, Xi & Guo, Xinyang & Lv, Jiajun & Lu, Tianguang & Song, Shaojie & McElroy, Michael, 2021. "Economic and technological feasibility of using power-to-hydrogen technology under higher wind penetration in China," Renewable Energy, Elsevier, vol. 173(C), pages 569-580.
    10. Kwan, Trevor Hocksun & Yao, Qinghe, 2019. "Preliminary study of integrating the vapor compression cycle with concentrated photovoltaic panels for supporting hydrogen production," Renewable Energy, Elsevier, vol. 134(C), pages 828-836.
    11. Parvez, Ashak Mahmud & Hafner, Selina & Hornberger, Matthias & Schmid, Max & Scheffknecht, Günter, 2021. "Sorption enhanced gasification (SEG) of biomass for tailored syngas production with in-situ CO2 capture: Current status, process scale-up experiences and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    12. Hoang, Anh Tuan & Pandey, Ashok & Martinez De Osés, Francisco Javier & Chen, Wei-Hsin & Said, Zafar & Ng, Kim Hoong & Ağbulut, Ümit & Tarełko, Wiesław & Ölçer, Aykut I. & Nguyen, Xuan Phuong, 2023. "Technological solutions for boosting hydrogen role in decarbonization strategies and net-zero goals of world shipping: Challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    13. Samuel Simon Araya & Vincenzo Liso & Xiaoti Cui & Na Li & Jimin Zhu & Simon Lennart Sahlin & Søren Højgaard Jensen & Mads Pagh Nielsen & Søren Knudsen Kær, 2020. "A Review of The Methanol Economy: The Fuel Cell Route," Energies, MDPI, vol. 13(3), pages 1-32, January.
    14. Jae-Hoon Kim & Chang-Yeol Oh & Ki-Ryong Kim & Jong-Pil Lee & Tae-Jin Kim, 2022. "Parameter Identification of Electrical Equivalent Circuits including Mass Transfer Parameters for the Selection of the Operating Frequencies of Pulsed PEM Water Electrolysis," Energies, MDPI, vol. 15(24), pages 1-16, December.
    15. Krzysztof Górecki & Emilian Świtalski & Paweł Górecki, 2022. "Modeling the Influence of the Electrolyte Concentration on Electrical Characteristics of an Alkaline Electrolyzer," Energies, MDPI, vol. 15(21), pages 1-14, October.
    16. Burin Yodwong & Damien Guilbert & Matheepot Phattanasak & Wattana Kaewmanee & Melika Hinaje & Gianpaolo Vitale, 2020. "Faraday’s Efficiency Modeling of a Proton Exchange Membrane Electrolyzer Based on Experimental Data," Energies, MDPI, vol. 13(18), pages 1-14, September.
    17. Wang, Zhiming & Wang, Xueye & Chen, Zhichao & Liao, Zhirong & Xu, Chao & Du, Xiaoze, 2021. "Energy and exergy analysis of a proton exchange membrane water electrolysis system without additional internal cooling," Renewable Energy, Elsevier, vol. 180(C), pages 1333-1343.
    18. Apostolou, Dimitrios & Enevoldsen, Peter, 2019. "The past, present and potential of hydrogen as a multifunctional storage application for wind power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 917-929.
    19. Marino, C. & Nucara, A. & Panzera, M.F. & Pietrafesa, M. & Varano, V., 2019. "Energetic and economic analysis of a stand alone photovoltaic system with hydrogen storage," Renewable Energy, Elsevier, vol. 142(C), pages 316-329.
    20. Genovese, Matteo & Fragiacomo, Petronilla, 2021. "Parametric technical-economic investigation of a pressurized hydrogen electrolyzer unit coupled with a storage compression system," Renewable Energy, Elsevier, vol. 180(C), pages 502-515.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:163:y:2021:i:c:p:1508-1522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.