IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v162y2020icp844-860.html
   My bibliography  Save this article

Particle-scale evaluation of the biomass steam-gasification process in a conical spouted bed gasifier

Author

Listed:
  • Yang, Shiliang
  • Fan, Feihu
  • Hu, Jianhang
  • Wang, Hua

Abstract

Based on the multiphase particle-in-cell approach, the steam gasification of biomass in a lab-scale spouted bed gasifier is simulated to explore the particle-scale transport behavior in three distinct regions of the bed. The numerical results are firstly validated with the experimental data, followed by assessing the particle-scale features of sand and biomass species in the gasifier. The results demonstrate that biomass particles in three regions of spouted bed behave with different constituent content, heat transfer coefficient and temperature. The intensive heat transfer occurs in the spout region and fountain region. Biomass particles in the spout have a small temperature, large mass, small carbon fraction, and large volatile fraction. Heterogeneous reactions of the biomass particles mainly occur in the lower part of the fountain region but can be negligible in the spout and annulus region. The water-gas reaction is two-order of magnitude faster than the methanation reaction and Boudouard reaction. The spatial distribution of particle-scale level information of both particle species is nonuniform due to the presence of three regions and biomass accumulation. The horizontal and vertical dispersion coefficient of both sand and biomass species are at the scale of 10−4 m2/s and 10−2 m2/s, respectively.

Suggested Citation

  • Yang, Shiliang & Fan, Feihu & Hu, Jianhang & Wang, Hua, 2020. "Particle-scale evaluation of the biomass steam-gasification process in a conical spouted bed gasifier," Renewable Energy, Elsevier, vol. 162(C), pages 844-860.
  • Handle: RePEc:eee:renene:v:162:y:2020:i:c:p:844-860
    DOI: 10.1016/j.renene.2020.08.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120312416
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.08.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xing, Jiangkuan & Wang, Haiou & Luo, Kun & Wang, Shuai & Bai, Yun & Fan, Jianren, 2019. "Predictive single-step kinetic model of biomass devolatilization for CFD applications: A comparison study of empirical correlations (EC), artificial neural networks (ANN) and random forest (RF)," Renewable Energy, Elsevier, vol. 136(C), pages 104-114.
    2. Benedetti, Vittoria & Ail, Snehesh Shivananda & Patuzzi, Francesco & Cristofori, Davide & Rauch, Reinhard & Baratieri, Marco, 2020. "Investigating the feasibility of valorizing residual char from biomass gasification as catalyst support in Fischer-Tropsch synthesis," Renewable Energy, Elsevier, vol. 147(P1), pages 884-894.
    3. Yang, Shiliang & Zhou, Tao & Wei, Yonggang & Hu, Jianhang & Wang, Hua, 2020. "Dynamical and thermal property of rising bubbles in the bubbling fluidized biomass gasifier with wide particle size distribution," Applied Energy, Elsevier, vol. 259(C).
    4. Yang, Shiliang & Wang, Hua & Wei, Yonggang & Hu, Jianhang & Chew, Jia Wei, 2019. "Eulerian-Lagrangian simulation of air-steam biomass gasification in a three-dimensional bubbling fluidized gasifier," Energy, Elsevier, vol. 181(C), pages 1075-1093.
    5. Ismail, Tamer M. & Ramos, Ana & Monteiro, Eliseu & El-Salam, M. Abd & Rouboa, Abel, 2020. "Parametric studies in the gasification agent and fluidization velocity during oxygen-enriched gasification of biomass in a pilot-scale fluidized bed: Experimental and numerical assessment," Renewable Energy, Elsevier, vol. 147(P1), pages 2429-2439.
    6. Zhong, Hanbin & Xu, Fei & Zhang, Juntao & Zhu, Yuqin & Liang, Shengrong & Niu, Ben & Zhang, Xinyu, 2019. "Variation of Geldart classification in MFM simulation of biomass fast pyrolysis considering the decrease of particle density and diameter," Renewable Energy, Elsevier, vol. 135(C), pages 208-217.
    7. Zhong, Hanbin & Xiong, Qingang & Zhu, Yuqin & Liang, Shengrong & Zhang, Juntao & Niu, Ben & Zhang, Xinyu, 2019. "CFD modeling of the effects of particle shrinkage and intra-particle heat conduction on biomass fast pyrolysis," Renewable Energy, Elsevier, vol. 141(C), pages 236-245.
    8. Cortazar, M. & Lopez, G. & Alvarez, J. & Amutio, M. & Bilbao, J. & Olazar, M., 2018. "Advantages of confining the fountain in a conical spouted bed reactor for biomass steam gasification," Energy, Elsevier, vol. 153(C), pages 455-463.
    9. Unknown, 2005. "Forward," 2005 Conference: Slovenia in the EU - Challenges for Agriculture, Food Science and Rural Affairs, November 10-11, 2005, Moravske Toplice, Slovenia 183804, Slovenian Association of Agricultural Economists (DAES).
    10. Park, Hoon Chae & Choi, Hang Seok, 2019. "Fast pyrolysis of biomass in a spouted bed reactor: Hydrodynamics, heat transfer and chemical reaction," Renewable Energy, Elsevier, vol. 143(C), pages 1268-1284.
    11. Wang, Ziliang & Lim, C. Jim & Grace, John R., 2019. "A comprehensive study of sawdust torrefaction in a dual-compartment slot-rectangular spouted bed reactor," Energy, Elsevier, vol. 189(C).
    12. Aguado, Roberto & Saldarriaga, Juan F. & Atxutegi, Aitor & Bilbao, Javier & Olazar, Martin, 2019. "Influence of the kinetic scheme and heat balance on the modelling of biomass combustion in a conical spouted bed," Energy, Elsevier, vol. 175(C), pages 758-767.
    13. Cardoso, João & Silva, Valter & Eusébio, Daniela & Brito, Paulo & Boloy, Ronney Mancebo & Tarelho, Luís & Silveira, José Luz, 2019. "Comparative 2D and 3D analysis on the hydrodynamics behaviour during biomass gasification in a pilot-scale fluidized bed reactor," Renewable Energy, Elsevier, vol. 131(C), pages 713-729.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yousef, Samy & Eimontas, Justas & Striūgas, Nerijus & Abdelnaby, Mohammed Ali, 2022. "Gasification kinetics of char derived from metallised food packaging plastics waste pyrolysis," Energy, Elsevier, vol. 239(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Tao & Yang, Shiliang & Wei, Yonggang & Hu, Jianhang & Wang, Hua, 2020. "Impact of wide particle size distribution on the gasification performance of biomass in a bubbling fluidized bed gasifier," Renewable Energy, Elsevier, vol. 148(C), pages 534-547.
    2. Yang, Shiliang & Dong, Ruihan & Du, Yanxiang & Wang, Shuai & Wang, Hua, 2021. "Numerical study of the biomass pyrolysis process in a spouted bed reactor through computational fluid dynamics," Energy, Elsevier, vol. 214(C).
    3. Du, Shaohua & Yuan, Shouzheng & Zhou, Qiang, 2021. "Numerical investigation of co-gasification of coal and PET in a fluidized bed reactor," Renewable Energy, Elsevier, vol. 172(C), pages 424-439.
    4. Yang, Shiliang & Wan, Zhanghao & Wang, Shuai & Wang, Hua, 2020. "Computational fluid study of radial and axial segregation characteristics in a dual fluidized bed reactor system," Energy, Elsevier, vol. 209(C).
    5. Wan, Zhanghao & Yang, Shiliang & Wei, Yonggang & Hu, Jianhang & Wang, Hua, 2020. "CFD modeling of the flow dynamics and gasification in the combustor and gasifier of a dual fluidized bed pilot plant," Energy, Elsevier, vol. 198(C).
    6. Zhang, Fengxia & Yang, Shiliang & Yang, Bin & Wang, Hua, 2022. "Mesoscale bubble dynamics in the gasifier of a 1MWth dual fluidized bed gasifier for biomass gasification," Energy, Elsevier, vol. 238(PB).
    7. Zhong, Hanbin & Xiong, Qingang & Yin, Lina & Zhang, Juntao & Zhu, Yuqin & Liang, Shengrong & Niu, Ben & Zhang, Xinyu, 2020. "CFD-based reduced-order modeling of fluidized-bed biomass fast pyrolysis using artificial neural network," Renewable Energy, Elsevier, vol. 152(C), pages 613-626.
    8. Pio, D.T. & Gomes, H.G.M.F. & Tarelho, L.A.C. & Vilas-Boas, A.C.M. & Matos, M.A.A. & Lemos, F.M.S., 2022. "Superheated steam injection as primary measure to improve producer gas quality from biomass air gasification in an autothermal pilot-scale gasifier," Renewable Energy, Elsevier, vol. 181(C), pages 1223-1236.
    9. Kartal, Furkan & Özveren, Uğur, 2020. "A deep learning approach for prediction of syngas lower heating value from CFB gasifier in Aspen plus®," Energy, Elsevier, vol. 209(C).
    10. Sebastián Uribe & Binbin Qi & Omar Farid & Muthanna Al-Dahhan, 2020. "Mathematical Modeling and Pointwise Validation of a Spouted Bed Using an Enhanced Bed Elasticity Approach," Energies, MDPI, vol. 13(18), pages 1-22, September.
    11. Pilar Lopez-Llompart & G. Mathias Kondolf, 2016. "Encroachments in floodways of the Mississippi River and Tributaries Project," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 513-542, March.
    12. Cheng, Jianquan & Bertolini, Luca, 2013. "Measuring urban job accessibility with distance decay, competition and diversity," Journal of Transport Geography, Elsevier, vol. 30(C), pages 100-109.
    13. M. De Donno & M. Pratelli, 2006. "A theory of stochastic integration for bond markets," Papers math/0602532, arXiv.org.
    14. Prilly Oktoviany & Robert Knobloch & Ralf Korn, 2021. "A machine learning-based price state prediction model for agricultural commodities using external factors," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 1063-1085, December.
    15. Michelle Sheran Sylvester, 2007. "The Career and Family Choices of Women: A Dynamic Analysis of Labor Force Participation, Schooling, Marriage and Fertility Decisions," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 10(3), pages 367-399, July.
    16. Henrekson, Magnus & Johansson, Dan, 2010. "Firm Growth, Institutions and Structural Transformation," Ratio Working Papers 150, The Ratio Institute.
    17. Karen K. Lewis, 2011. "Global Asset Pricing," Annual Review of Financial Economics, Annual Reviews, vol. 3(1), pages 435-466, December.
    18. DAVID M. BLAU & WILBERT van der KLAAUW, 2013. "What Determines Family Structure?," Economic Inquiry, Western Economic Association International, vol. 51(1), pages 579-604, January.
    19. Panagiota DIONYSOPOULOU & Georgios SVARNIAS & Theodore PAPAILIAS, 2021. "Total Quality Management In Public Sector, Case Study: Customs Service," Regional Science Inquiry, Hellenic Association of Regional Scientists, vol. 0(1), pages 153-168, June.
    20. Afanasyev, Dmitriy O. & Fedorova, Elena A. & Popov, Viktor U., 2015. "Fine structure of the price–demand relationship in the electricity market: Multi-scale correlation analysis," Energy Economics, Elsevier, vol. 51(C), pages 215-226.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:162:y:2020:i:c:p:844-860. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.