IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v161y2020icp525-542.html
   My bibliography  Save this article

Improving wind turbine blade based on multi-objective particle swarm optimization

Author

Listed:
  • Li, Yingjue
  • Wei, Kexiang
  • Yang, Wenxian
  • Wang, Qiong

Abstract

This paper studies a new method for optimizing the design of wind turbine blades. Compared with the existing blade design methods, the proposed method not only considers the structural strength and stiffness of the blade but also considers the noise and power generation efficiency of the blade. The method utilizes a multi-objective particle swarm optimization method and the finite volume method in combination to meet the strength and stiffness requirements of the wind turbine blade, improve its aerodynamic performance and reduce its noise. In the study, the geometries of the blade used by a 2 MW wind turbine are taken as the initial parameters of the target blade and MATLAB and ANSYS are employed to perform the optimization and finite element analysis based performance calculations. Then an intelligent optimization algorithm was developed for achieving a quiet and efficient wind turbine blade. In such a multi-objective optimization algorithm, both structural strength, stiffness, noise reduction, and aerodynamic performance of the blade are taken as objective functions. The simulation results have shown that through optimization, the blade noise was reduced by 3.1 dB and the power coefficient was increased by 6.9%. Moreover, it is found that the blade’s structural strength and stiffness are also improved after optimization. This implies that the proposed algorithm is also helpful to further reduce the manufacturing materials and costs of wind turbine blades.

Suggested Citation

  • Li, Yingjue & Wei, Kexiang & Yang, Wenxian & Wang, Qiong, 2020. "Improving wind turbine blade based on multi-objective particle swarm optimization," Renewable Energy, Elsevier, vol. 161(C), pages 525-542.
  • Handle: RePEc:eee:renene:v:161:y:2020:i:c:p:525-542
    DOI: 10.1016/j.renene.2020.07.067
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120311435
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.07.067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter J. Schubel & Richard J. Crossley, 2012. "Wind Turbine Blade Design," Energies, MDPI, vol. 5(9), pages 1-25, September.
    2. Göçmen, Tuhfe & Özerdem, Barış, 2012. "Airfoil optimization for noise emission problem and aerodynamic performance criterion on small scale wind turbines," Energy, Elsevier, vol. 46(1), pages 62-71.
    3. Aslam Bhutta, Muhammad Mahmood & Hayat, Nasir & Farooq, Ahmed Uzair & Ali, Zain & Jamil, Sh. Rehan & Hussain, Zahid, 2012. "Vertical axis wind turbine – A review of various configurations and design techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1926-1939.
    4. Ghasemian, Masoud & Nejat, Amir, 2015. "Aero-acoustics prediction of a vertical axis wind turbine using Large Eddy Simulation and acoustic analogy," Energy, Elsevier, vol. 88(C), pages 711-717.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Jingqi & Ruze, Nuermaimaiti & Zhang, Jianjun & Shi, Jing & Shen, Boyang, 2021. "Capacity planning and optimization for integrated energy system in industrial park considering environmental externalities," Renewable Energy, Elsevier, vol. 167(C), pages 56-65.
    2. Jia, Liangyue & Hao, Jia & Hall, John & Nejadkhaki, Hamid Khakpour & Wang, Guoxin & Yan, Yan & Sun, Mengyuan, 2021. "A reinforcement learning based blade twist angle distribution searching method for optimizing wind turbine energy power," Energy, Elsevier, vol. 215(PA).
    3. Jinlei Lv & Wenxian Yang & Haiyang Zhang & Daxiong Liao & Zebin Ren & Qin Chen, 2021. "A Feasibility Study to Reduce Infrasound Emissions from Existing Wind Turbine Blades Using a Biomimetic Technique," Energies, MDPI, vol. 14(16), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peng, H.Y. & Liu, H.J. & Yang, J.H., 2021. "A review on the wake aerodynamics of H-rotor vertical axis wind turbines," Energy, Elsevier, vol. 232(C).
    2. Tummala, Abhishiktha & Velamati, Ratna Kishore & Sinha, Dipankur Kumar & Indraja, V. & Krishna, V. Hari, 2016. "A review on small scale wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1351-1371.
    3. Nikolić, Vlastimir & Sajjadi, Shahin & Petković, Dalibor & Shamshirband, Shahaboddin & Ćojbašić, Žarko & Por, Lip Yee, 2016. "Design and state of art of innovative wind turbine systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 258-265.
    4. Škvorc, Petar & Kozmar, Hrvoje, 2021. "Wind energy harnessing on tall buildings in urban environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    5. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
    6. Michał Pacholczyk & Dariusz Karkosiński, 2020. "Parametric Study on a Performance of a Small Counter-Rotating Wind Turbine," Energies, MDPI, vol. 13(15), pages 1-17, July.
    7. Emejeamara, F.C. & Tomlin, A.S. & Millward-Hopkins, J.T., 2015. "Urban wind: Characterisation of useful gust and energy capture," Renewable Energy, Elsevier, vol. 81(C), pages 162-172.
    8. Chong, W.T. & Gwani, M. & Shamshirband, S. & Muzammil, W.K. & Tan, C.J. & Fazlizan, A. & Poh, S.C. & Petković, Dalibor & Wong, K.H., 2016. "Application of adaptive neuro-fuzzy methodology for performance investigation of a power-augmented vertical axis wind turbine," Energy, Elsevier, vol. 102(C), pages 630-636.
    9. Pagnini, Luisa C. & Burlando, Massimiliano & Repetto, Maria Pia, 2015. "Experimental power curve of small-size wind turbines in turbulent urban environment," Applied Energy, Elsevier, vol. 154(C), pages 112-121.
    10. Guo, Fen & Song, Baowei & Mao, Zhaoyong & Tian, Wenlong, 2020. "Experimental and numerical validation of the influence on Savonius turbine caused by rear deflector," Energy, Elsevier, vol. 196(C).
    11. Wiroon Monatrakul & Kritsadang Senawong & Piyawat Sritram & Ratchaphon Suntivarakorn, 2023. "A Comparison Study of Hydro-Compact Generators with Horizontal Spiral Turbines (HSTs) and a Three-Blade Turbine Used in Irrigation Canals," Energies, MDPI, vol. 16(5), pages 1-15, February.
    12. Zhang, Sanxia & Luo, Kun & Yuan, Renyu & Wang, Qiang & Wang, Jianwen & Zhang, Liru & Fan, Jianren, 2018. "Influences of operating parameters on the aerodynamics and aeroacoustics of a horizontal-axis wind turbine," Energy, Elsevier, vol. 160(C), pages 597-611.
    13. Sessarego, Matias & Feng, Ju & Ramos-García, Néstor & Horcas, Sergio González, 2020. "Design optimization of a curved wind turbine blade using neural networks and an aero-elastic vortex method under turbulent inflow," Renewable Energy, Elsevier, vol. 146(C), pages 1524-1535.
    14. Tian, Wenlong & Song, Baowei & Mao, Zhaoyong, 2020. "Numerical investigation of wind turbines and turbine arrays on highways," Renewable Energy, Elsevier, vol. 147(P1), pages 384-398.
    15. Villeneuve, Thierry & Boudreau, Matthieu & Dumas, Guy, 2020. "Improving the efficiency and the wake recovery rate of vertical-axis turbines using detached end-plates," Renewable Energy, Elsevier, vol. 150(C), pages 31-45.
    16. Ali, Qazi Shahzad & Kim, Man-Hoe, 2021. "Design and performance analysis of an airborne wind turbine for high-altitude energy harvesting," Energy, Elsevier, vol. 230(C).
    17. Didane, Djamal Hissein & Rosly, Nurhayati & Zulkafli, Mohd Fadhli & Shamsudin, Syariful Syafiq, 2018. "Performance evaluation of a novel vertical axis wind turbine with coaxial contra-rotating concept," Renewable Energy, Elsevier, vol. 115(C), pages 353-361.
    18. Anicic, Obrad & Jovic, Srdjan, 2016. "Adaptive neuro-fuzzy approach for ducted tidal turbine performance estimation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1111-1116.
    19. Avri Eitan & Gillad Rosen & Lior Herman & Itay Fishhendler, 2020. "Renewable Energy Entrepreneurs: A Conceptual Framework," Energies, MDPI, vol. 13(10), pages 1-23, May.
    20. Ying, P. & Chen, Y.K. & Xu, Y.G. & Tian, Y., 2015. "Computational and experimental investigations of an omni-flow wind turbine," Applied Energy, Elsevier, vol. 146(C), pages 74-83.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:161:y:2020:i:c:p:525-542. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.