IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v160y2020icp176-184.html
   My bibliography  Save this article

The modified supercritical media for one-pot biodiesel production from Chlorella vulgaris using photochemically-synthetized SrTiO3 nanocatalyst

Author

Listed:
  • Aghilinategh, Maryam
  • Barati, Mohammad
  • Hamadanian, Masood

Abstract

In this research, a one-pot production of biodiesel, hydrocarbons, oxygenates, and aromatics form Chlorella vulgaris was performed in supercritical methanol without catalyst and in the presence of TiO2 and SrTiO3 nanocatalysts. The reaction in the presence of SrTiO3 showed the highest production yield of fatty acid methyl esters (FAMEs). The co-solvents water, chloroform, diethyl ether, and n-hexane were used for modifying the supercritical medium to affect the product yields in SrTiO3-catalyzed process. The SrTiO3 nanocatalyst was photochemically prepared and the leaching of catalysts into the products was evaluated. Results showed that for all products except oxygenates, the addition of diethyl ether and chloroform to methanol had a slightly positive effect on the production yields. For all products, n-hexane co-solvent showed the best performance with production yields of 16.65, 2.42, 2.12, and 0.57 mg.g−1biomass for FAMEs, oxygenates, hydrocarbons, and aromatics, respectively. Furthermore, the water showed no significant effect on production yields except in the case of oxygenates. The results may be due to the high ability of n-hexane for dissolving the biomass in the reaction condition. Also, the ICP-OES detected no trace amounts of catalyst in the final product and it confirms that the photochemical method for catalyst preparation can prevent the catalyst leaching.

Suggested Citation

  • Aghilinategh, Maryam & Barati, Mohammad & Hamadanian, Masood, 2020. "The modified supercritical media for one-pot biodiesel production from Chlorella vulgaris using photochemically-synthetized SrTiO3 nanocatalyst," Renewable Energy, Elsevier, vol. 160(C), pages 176-184.
  • Handle: RePEc:eee:renene:v:160:y:2020:i:c:p:176-184
    DOI: 10.1016/j.renene.2020.06.081
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120309952
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.06.081?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nematian, Tahereh & Salehi, Zeinab & Shakeri, Alireza, 2020. "Conversion of bio-oil extracted from Chlorella vulgaris micro algae to biodiesel via modified superparamagnetic nano-biocatalyst," Renewable Energy, Elsevier, vol. 146(C), pages 1796-1804.
    2. Endalew, Abebe K. & Kiros, Yohannes & Zanzi, Rolando, 2011. "Heterogeneous catalysis for biodiesel production from Jatropha curcas oil (JCO)," Energy, Elsevier, vol. 36(5), pages 2693-2700.
    3. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    4. Borges, M.E. & Díaz, L., 2012. "Recent developments on heterogeneous catalysts for biodiesel production by oil esterification and transesterification reactions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2839-2849.
    5. Naor, Efrat Ohayon & Koberg, Miri & Gedanken, Aharon, 2017. "Nonaqueous synthesis of SrO nanopowder and SrO/SiO2 composite and their application for biodiesel production via microwave irradiation," Renewable Energy, Elsevier, vol. 101(C), pages 493-499.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vieira de Mendonça, Henrique & Assemany, Paula & Abreu, Mariana & Couto, Eduardo & Maciel, Alyne Martins & Duarte, Renata Lopes & Barbosa dos Santos, Marcela Granato & Reis, Alberto, 2021. "Microalgae in a global world: New solutions for old problems?," Renewable Energy, Elsevier, vol. 165(P1), pages 842-862.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Heng & Li, Hu & Hu, Yulin & Venkateswara Rao, Kasanneni Tirumala & Xu, Chunbao (Charles) & Yang, Song, 2019. "Advances in production of bio-based ester fuels with heterogeneous bifunctional catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    2. Mardhiah, H. Haziratul & Ong, Hwai Chyuan & Masjuki, H.H. & Lim, Steven & Lee, H.V., 2017. "A review on latest developments and future prospects of heterogeneous catalyst in biodiesel production from non-edible oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1225-1236.
    3. Elena Ghedini & Somayeh Taghavi & Federica Menegazzo & Michela Signoretto, 2021. "A Review on the Efficient Catalysts for Algae Transesterification to Biodiesel," Sustainability, MDPI, vol. 13(18), pages 1-20, September.
    4. Mansir, Nasar & Teo, Siow Hwa & Rashid, Umer & Saiman, Mohd Izham & Tan, Yen Ping & Alsultan, G. Abdulkareem & Taufiq-Yap, Yun Hin, 2018. "Modified waste egg shell derived bifunctional catalyst for biodiesel production from high FFA waste cooking oil. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3645-3655.
    5. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    6. Yahya, Syahirah & Muhamad Wahab, Syamsul Kamar & Harun, Farah Wahida, 2020. "Optimization of biodiesel production from waste cooking oil using Fe-Montmorillonite K10 by response surface methodology," Renewable Energy, Elsevier, vol. 157(C), pages 164-172.
    7. Lau, Allen K.S. & Bilad, M.R. & Nordin, N.A.H.M. & Faungnawakij, Kajornsak & Narkkun, Thanitporn & Wang, David K. & Mahlia, T.M.I. & Jaafar, Juhana, 2020. "Effect of membrane properties on tilted panel performance of microalgae biomass filtration for biofuel feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    8. Mahlia, T.M.I. & Syazmi, Z.A.H.S. & Mofijur, M. & Abas, A.E. Pg & Bilad, M.R. & Ong, Hwai Chyuan & Silitonga, A.S., 2020. "Patent landscape review on biodiesel production: Technology updates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    9. Banerjee, Madhuchanda & Dey, Binita & Talukdar, Jayanta & Chandra Kalita, Mohan, 2014. "Production of biodiesel from sunflower oil using highly catalytic bimetallic gold–silver core–shell nanoparticle," Energy, Elsevier, vol. 69(C), pages 695-699.
    10. Li, Ying & Niu, Shengli & Wang, Jun & Zhou, Wenbo & Wang, Yongzheng & Han, Kuihua & Lu, Chunmei, 2022. "Mesoporous SrTiO3 perovskite as a heterogeneous catalyst for biodiesel production: Experimental and DFT studies," Renewable Energy, Elsevier, vol. 184(C), pages 164-175.
    11. Shen, Yafei, 2017. "Rice husk silica derived nanomaterials for sustainable applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 453-466.
    12. Sánchez, Marcos & Navas, Marisa & Ruggera, José F. & Casella, Mónica L. & Aracil, José & Martínez, Mercedes, 2014. "Biodiesel production optimization using γAl2O3 based catalysts," Energy, Elsevier, vol. 73(C), pages 661-669.
    13. Hwei Voon Lee & Joon Ching Juan & Taufiq-Yap Yun Hin & Hwai Chyuan Ong, 2016. "Environment-Friendly Heterogeneous Alkaline-Based Mixed Metal Oxide Catalysts for Biodiesel Production," Energies, MDPI, vol. 9(8), pages 1-12, August.
    14. Galusnyak, Stefan Cristian & Petrescu, Letitia & Cormos, Calin-Cristian, 2022. "Classical vs. reactive distillation technologies for biodiesel production: An environmental comparison using LCA methodology," Renewable Energy, Elsevier, vol. 192(C), pages 289-299.
    15. Rattanaphra, Dussadee & Soodjit, Phansiri & Thanapimmetha, Anusith & Saisriyoot, Maythee & Srinophakun, Penjit, 2019. "Synthesis, characterization and catalytic activity studies of lanthanum oxide from Thai monazite ore for biodiesel production," Renewable Energy, Elsevier, vol. 131(C), pages 1128-1137.
    16. Arridina Susan Silitonga & Teuku Meurah Indra Mahlia & Abd Halim Shamsuddin & Hwai Chyuan Ong & Jassinnee Milano & Fitranto Kusumo & Abdi Hanra Sebayang & Surya Dharma & Husin Ibrahim & Hazlina Husin , 2019. "Optimization of Cerbera manghas Biodiesel Production Using Artificial Neural Networks Integrated with Ant Colony Optimization," Energies, MDPI, vol. 12(20), pages 1-21, October.
    17. Zhang, Yujiao & Niu, Shengli & Han, Kuihua & Li, Yingjie & Lu, Chunmei, 2021. "Synthesis of the SrO–CaO–Al2O3 trimetallic oxide catalyst for transesterification to produce biodiesel," Renewable Energy, Elsevier, vol. 168(C), pages 981-990.
    18. Wang, Yongqiang & Zhao, Dan & Chen, Guanyi & Liu, Shejiang & Ji, Na & Ding, Hui & Fu, Jianfeng, 2019. "Preparation of phosphotungstic acid based poly(ionic liquid) and its application to esterification of palmitic acid," Renewable Energy, Elsevier, vol. 133(C), pages 317-324.
    19. Fazril Ideris & Mohd Faiz Muaz Ahmad Zamri & Abd Halim Shamsuddin & Saifuddin Nomanbhay & Fitranto Kusumo & Islam Md Rizwanul Fattah & Teuku Meurah Indra Mahlia, 2022. "Progress on Conventional and Advanced Techniques of In Situ Transesterification of Microalgae Lipids for Biodiesel Production," Energies, MDPI, vol. 15(19), pages 1-32, September.
    20. Wang, Xiao-Man & Zeng, Ya-Nan & Wang, Yu-Ran & Wang, Fu-Ping & Wang, Yi-Tong & Li, Jun-Guo & Ji, Rui & Kang, Le-Le & Yu, Qing & Liu, Tian-Ji & Fang, Zhen, 2023. "A novel strategy for efficient biodiesel production: Optimization, prediction, and mechanism," Renewable Energy, Elsevier, vol. 207(C), pages 385-397.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:160:y:2020:i:c:p:176-184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.