IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v151y2020icp1209-1219.html
   My bibliography  Save this article

Design and development of energy efficient re-roofing solutions

Author

Listed:
  • Habibi, Shahryar
  • Obonyo, Esther Adhiambo
  • Memari, Ali M.

Abstract

Although the study of roofing systems (from coverings to structure of the roof) is of great significance to energy efficiency and sustainable development, design and construction of new roofs on top of existing roofs in buildings has not received sufficient attention. This study discusses re-roofing as one of the key options to reduce energy consumption and improve overall building performance. The more conventional choice and more frequently chosen option for building energy retrofit is vertical building envelope components, however, this paper presents the case study of a proposed retrofitting concept for the roof of an existing building. Using a simulation methodology, the research demonstrates how the proposed retrofitting concept improves the energy performance using electricity generated and external conduction gain as evaluation metrics. The proposed novel re-roofing concept consists of thermal insulation, waterproofing and electric energy generation properties. More specifically, the design concept includes a three-layer roofing system consisting of (from exterior toward interior): a PV panel, an EPDM membrane and an insulation layer. The main goal of this study is to develop a concept for an innovative re-roofing solution that demonstrates the feasibility of turning an old building into a watertight and energy producing system.

Suggested Citation

  • Habibi, Shahryar & Obonyo, Esther Adhiambo & Memari, Ali M., 2020. "Design and development of energy efficient re-roofing solutions," Renewable Energy, Elsevier, vol. 151(C), pages 1209-1219.
  • Handle: RePEc:eee:renene:v:151:y:2020:i:c:p:1209-1219
    DOI: 10.1016/j.renene.2019.11.128
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119318221
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.11.128?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sorgato, M.J. & Schneider, K. & Rüther, R., 2018. "Technical and economic evaluation of thin-film CdTe building-integrated photovoltaics (BIPV) replacing façade and rooftop materials in office buildings in a warm and sunny climate," Renewable Energy, Elsevier, vol. 118(C), pages 84-98.
    2. Li, Danny H.W. & Yang, Liu & Lam, Joseph C., 2013. "Zero energy buildings and sustainable development implications – A review," Energy, Elsevier, vol. 54(C), pages 1-10.
    3. Gourlis, Georgios & Kovacic, Iva, 2016. "A study on building performance analysis for energy retrofit of existing industrial facilities," Applied Energy, Elsevier, vol. 184(C), pages 1389-1399.
    4. Baldwin, Andrew N. & Loveday, Dennis L. & Li, Baizhan & Murray, Michael & Yu, Wei, 2018. "A research agenda for the retrofitting of residential buildings in China – A case study," Energy Policy, Elsevier, vol. 113(C), pages 41-51.
    5. Anna Laura Pisello & Gloria Pignatta & Veronica Lucia Castaldo & Franco Cotana, 2014. "Experimental Analysis of Natural Gravel Covering as Cool Roofing and Cool Pavement," Sustainability, MDPI, vol. 6(8), pages 1-17, July.
    6. Chan, A.L.S. & Chow, T.T., 2013. "Evaluation of Overall Thermal Transfer Value (OTTV) for commercial buildings constructed with green roof," Applied Energy, Elsevier, vol. 107(C), pages 10-24.
    7. Evangelos Efthymiou & Öget N. Cöcen & Sergio R. Ermolli, 2010. "Sustainable Aluminium Systems," Sustainability, MDPI, vol. 2(9), pages 1-10, September.
    8. Saafi, Khawla & Daouas, Naouel, 2018. "A life-cycle cost analysis for an optimum combination of cool coating and thermal insulation of residential building roofs in Tunisia," Energy, Elsevier, vol. 152(C), pages 925-938.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ghasan Alfalah & Abobakr Al-Sakkaf & Eslam Mohammed Abdelkader & Tarek Zayed, 2022. "An Integrated Fuzzy-Based Sustainability Framework for Post-Secondary Educational Buildings: A User-Perspective Approach," Sustainability, MDPI, vol. 14(16), pages 1-26, August.
    2. Ahmad Sedaghat & Arash Mahdizadeh & Ramadas Narayanan & Hayder Salem & Wisam K. Hussam & Mohamad Iyad Al-Khiami & Mahdi Ashtian Malayer & Sayed M. Soleimani & Mohammad Sabati & Mohammad Rasul & Mohamm, 2023. "Implementing Cool Roof and Bio-PCM in Portable Cabins to Create Low-Energy Buildings Suitable for Different Climates," Sustainability, MDPI, vol. 15(20), pages 1-24, October.
    3. Muhammed Yildirim & Hasan Polat, 2023. "Building Information Modeling Applications in Energy-Efficient Refurbishment of Existing Building Stock: A Case Study," Sustainability, MDPI, vol. 15(18), pages 1-19, September.
    4. Francisco Javier Montiel-Santiago & Manuel Jesús Hermoso-Orzáez & Julio Terrados-Cepeda, 2020. "Sustainability and Energy Efficiency: BIM 6D. Study of the BIM Methodology Applied to Hospital Buildings. Value of Interior Lighting and Daylight in Energy Simulation," Sustainability, MDPI, vol. 12(14), pages 1-29, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francisco Javier Montiel-Santiago & Manuel Jesús Hermoso-Orzáez & Julio Terrados-Cepeda, 2020. "Sustainability and Energy Efficiency: BIM 6D. Study of the BIM Methodology Applied to Hospital Buildings. Value of Interior Lighting and Daylight in Energy Simulation," Sustainability, MDPI, vol. 12(14), pages 1-29, July.
    2. Julia Reisinger & Patrick Hollinsky & Iva Kovacic, 2021. "Design Guideline for Flexible Industrial Buildings Integrating Industry 4.0 Parameters," Sustainability, MDPI, vol. 13(19), pages 1-24, September.
    3. Deng, S. & Wang, R.Z. & Dai, Y.J., 2014. "How to evaluate performance of net zero energy building – A literature research," Energy, Elsevier, vol. 71(C), pages 1-16.
    4. Gao, Jiajia & Li, Anbang & Xu, Xinhua & Gang, Wenjie & Yan, Tian, 2018. "Ground heat exchangers: Applications, technology integration and potentials for zero energy buildings," Renewable Energy, Elsevier, vol. 128(PA), pages 337-349.
    5. Saafi, Khawla & Daouas, Naouel, 2019. "Energy and cost efficiency of phase change materials integrated in building envelopes under Tunisia Mediterranean climate," Energy, Elsevier, vol. 187(C).
    6. Li, Danny H.W. & Lou, Siwei, 2018. "Review of solar irradiance and daylight illuminance modeling and sky classification," Renewable Energy, Elsevier, vol. 126(C), pages 445-453.
    7. Jia, Shuning & Sheng, Kai & Huang, Dehai & Hu, Kai & Xu, Yizhe & Yan, Chengchu, 2023. "Design optimization of energy systems for zero energy buildings based on grid-friendly interaction with smart grid," Energy, Elsevier, vol. 284(C).
    8. D’Adamo, Idiano & Falcone, Pasquale Marcello & Gastaldi, Massimo & Morone, Piergiuseppe, 2020. "The economic viability of photovoltaic systems in public buildings: Evidence from Italy," Energy, Elsevier, vol. 207(C).
    9. Jovanović, Marina & Vučićević, Biljana & Turanjanin, Valentina & Živković, Marija & Spasojević, Vuk, 2014. "Investigation of indoor and outdoor air quality of the classrooms at a school in Serbia," Energy, Elsevier, vol. 77(C), pages 42-48.
    10. Vera, Sergio & Pinto, Camilo & Tabares-Velasco, Paulo Cesar & Bustamante, Waldo, 2018. "A critical review of heat and mass transfer in vegetative roof models used in building energy and urban enviroment simulation tools," Applied Energy, Elsevier, vol. 232(C), pages 752-764.
    11. Wang, Chenghao & Wang, Zhi-Hua & Kaloush, Kamil E. & Shacat, Joseph, 2021. "Cool pavements for urban heat island mitigation: A synthetic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    12. Roberta Moschetti & Shabnam Homaei & Ellika Taveres-Cachat & Steinar Grynning, 2022. "Assessing Responsive Building Envelope Designs through Robustness-Based Multi-Criteria Decision Making in Zero-Emission Buildings," Energies, MDPI, vol. 15(4), pages 1-27, February.
    13. Hu, Jianhui & Chen, Wujun & Yang, Deqing & Zhao, Bing & Song, Hao & Ge, Binbin, 2016. "Energy performance of ETFE cushion roof integrated photovoltaic/thermal system on hot and cold days," Applied Energy, Elsevier, vol. 173(C), pages 40-51.
    14. Berardi, Umberto & GhaffarianHoseini, AmirHosein & GhaffarianHoseini, Ali, 2014. "State-of-the-art analysis of the environmental benefits of green roofs," Applied Energy, Elsevier, vol. 115(C), pages 411-428.
    15. Espinoza, R. & Muñoz-Cerón, E. & Aguilera, J. & de la Casa, J., 2019. "Feasibility evaluation of residential photovoltaic self-consumption projects in Peru," Renewable Energy, Elsevier, vol. 136(C), pages 414-427.
    16. Kangji Li & Lei Pan & Wenping Xue & Hui Jiang & Hanping Mao, 2017. "Multi-Objective Optimization for Energy Performance Improvement of Residential Buildings: A Comparative Study," Energies, MDPI, vol. 10(2), pages 1-23, February.
    17. Gunther Gehlert & Marlies Wiegand & Mariya Lymar & Stefan Huusmann, 2022. "Simultaneity in Renewable Building Energy Supply—A Case Study on a Lecturing and Exhibition Building on a University Campus Located in the Cfb Climate Zone," Sustainability, MDPI, vol. 14(19), pages 1-18, October.
    18. Liu, Yu & Hu, Xiaohong & Feng, Kuishuang, 2017. "Economic and environmental implications of raising China's emission standard for thermal power plants: An environmentally extended CGE analysis," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 64-72.
    19. Verhaeghe, C. & Verbeke, S. & Audenaert, A., 2021. "A consistent taxonomic framework: towards common understanding of high energy performance building definitions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    20. Capeluto, I. Guedi & Ochoa, Carlos E., 2014. "Simulation-based method to determine climatic energy strategies of an adaptable building retrofit façade system," Energy, Elsevier, vol. 76(C), pages 375-384.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:151:y:2020:i:c:p:1209-1219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.