IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v146y2020icp2462-2471.html
   My bibliography  Save this article

Developing of the new models in solar radiation estimation with curve fitting based on moving least-squares approximation

Author

Listed:
  • Gul Kaplan, Ayse
  • Alper Kaplan, Yusuf

Abstract

Recently, serious progress has been made in solar energy applications in developed and developing countries. Solar radiation on a horizontal surface is the basic parameter required for the design of solar energy systems and for evaluating the system performance. Therefore, solar radiation the exact determination of the amount of land in different latitudes on the earth's surface is of great importance in many solar energy applications. In this study, Angstorm coefficients were determined by Moving Least Squares Approximation (MLSA). Three different models were obtained by using the moving least squares method. In this study, new empirical models were developed for determining the monthly average daily global solar radiation on a horizontal surface for Antalya. The developed models were compared with the models in the literature by using different error analysis methods. The statistical compatibility of the investigated models was tested and the model closest to the measurements was determined. Although, this study concluded that the suggested methods are applicable to estimate the monthly average daily diffuse radiation on a horizontal surface for selected region, it has been observed that the performance of these models varies according to years and the error analysis test used. If the results are generally evaluated the developed linear model showed the best performance to estimate the global solar radiation on a horizontal surface for Antalya. Also, among the models used in the literature, the Togrul model showed the best performance for selected region.

Suggested Citation

  • Gul Kaplan, Ayse & Alper Kaplan, Yusuf, 2020. "Developing of the new models in solar radiation estimation with curve fitting based on moving least-squares approximation," Renewable Energy, Elsevier, vol. 146(C), pages 2462-2471.
  • Handle: RePEc:eee:renene:v:146:y:2020:i:c:p:2462-2471
    DOI: 10.1016/j.renene.2019.08.095
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119312820
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.08.095?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Toğrul, İnci Türk & Onat, Emin, 2000. "A comparison of estimated and measured values of solar radiation in Elaziğ, Turkey," Renewable Energy, Elsevier, vol. 20(2), pages 243-252.
    2. Aksoy, Bülent, 1997. "Estimated monthly average global radiation for Turkey and its comparison with observations," Renewable Energy, Elsevier, vol. 10(4), pages 625-633.
    3. Kaygusuz, Kamil, 2011. "Prospect of concentrating solar power in Turkey: The sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 808-814, January.
    4. Toğrul, İnci Türk & Toğrul, Hasan & Evin, Dugyu, 2000. "Estimation of monthly global solar radiation from sunshine duration measurement in Elaziğ," Renewable Energy, Elsevier, vol. 19(4), pages 587-595.
    5. Bahel, V. & Srinivasan, R. & Bakhsh, H., 1986. "Solar radiation for Dhahran, Saudi Arabia," Energy, Elsevier, vol. 11(10), pages 985-989.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ramírez, Andres Felipe & Valencia, Carlos Felipe & Cabrales, Sergio & Ramírez, Carlos G., 2021. "Simulation of photo-voltaic power generation using copula autoregressive models for solar irradiance and air temperature time series," Renewable Energy, Elsevier, vol. 175(C), pages 44-67.
    2. Hwangbo, Soonho & Heo, SungKu & Yoo, ChangKyoo, 2022. "Development of deterministic-stochastic model to integrate variable renewable energy-driven electricity and large-scale utility networks: Towards decarbonization petrochemical industry," Energy, Elsevier, vol. 238(PC).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Despotovic, Milan & Nedic, Vladimir & Despotovic, Danijela & Cvetanovic, Slobodan, 2015. "Review and statistical analysis of different global solar radiation sunshine models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1869-1880.
    2. Makade, Rahul G. & Jamil, Basharat, 2018. "Statistical analysis of sunshine based global solar radiation (GSR) models for tropical wet and dry climatic Region in Nagpur, India: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 22-43.
    3. El Ouderni, Ahmed Ridha & Maatallah, Taher & El Alimi, Souheil & Ben Nassrallah, Sassi, 2013. "Experimental assessment of the solar energy potential in the gulf of Tunis, Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 155-168.
    4. Bakirci, Kadir, 2009. "Models of solar radiation with hours of bright sunshine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2580-2588, December.
    5. Bakirci, Kadir, 2009. "Correlations for estimation of daily global solar radiation with hours of bright sunshine in Turkey," Energy, Elsevier, vol. 34(4), pages 485-501.
    6. Bayrakçı, Hilmi Cenk & Demircan, Cihan & Keçebaş, Ali, 2018. "The development of empirical models for estimating global solar radiation on horizontal surface: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2771-2782.
    7. Besharat, Fariba & Dehghan, Ali A. & Faghih, Ahmad R., 2013. "Empirical models for estimating global solar radiation: A review and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 798-821.
    8. Martín, Helena & de la Hoz, Jordi & Velasco, Guillermo & Castilla, Miguel & García de Vicuña, José Luís, 2015. "Promotion of concentrating solar thermal power (CSP) in Spain: Performance analysis of the period 1998–2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1052-1068.
    9. Toklu, E., 2013. "Overview of potential and utilization of renewable energy sources in Turkey," Renewable Energy, Elsevier, vol. 50(C), pages 456-463.
    10. Kaygusuz, Kamil, 2012. "Energy for sustainable development: A case of developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1116-1126.
    11. Ramachandra, T.V. & Jain, Rishabh & Krishnadas, Gautham, 2011. "Hotspots of solar potential in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3178-3186, August.
    12. Seyithan Ahmet Ate, 2013. "A Novel Approach to Development of Renewable Heating Support Policies in Turkey," International Journal of Energy Economics and Policy, Econjournals, vol. 3(Special), pages 115-126.
    13. Ajbar, Wassila & Parrales, A. & Huicochea, A. & Hernández, J.A., 2022. "Different ways to improve parabolic trough solar collectors’ performance over the last four decades and their applications: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    14. Korachagaon, Iranna & Bapat, V.N., 2012. "General formula for the estimation of global solar radiation on earth’s surface around the globe," Renewable Energy, Elsevier, vol. 41(C), pages 394-400.
    15. Işık, Erdem & Inallı, Mustafa, 2018. "Artificial neural networks and adaptive neuro-fuzzy inference systems approaches to forecast the meteorological data for HVAC: The case of cities for Turkey," Energy, Elsevier, vol. 154(C), pages 7-16.
    16. Pavlović, Tomislav M. & Radonjić, Ivana S. & Milosavljević, Dragana D. & Pantić, Lana S., 2012. "A review of concentrating solar power plants in the world and their potential use in Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3891-3902.
    17. Monaem Elmnifi & Moneer Amhamed & Naji Abdelwanis & Otman Imrayed, 2018. "Solar Supported Steam Production For Power Generation In Libya," Acta Mechanica Malaysia (AMM), Zibeline International Publishing, vol. 1(2), pages 5-9, February.
    18. Sözen, Adnan & Özalp, Mehmet, 2005. "Solar-driven ejector-absorption cooling system," Applied Energy, Elsevier, vol. 80(1), pages 97-113, January.
    19. Teke, Ahmet & Yıldırım, H. Başak & Çelik, Özgür, 2015. "Evaluation and performance comparison of different models for the estimation of solar radiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1097-1107.
    20. Azadeh, A. & Ghaderi, S.F. & Maghsoudi, A., 2008. "Location optimization of solar plants by an integrated hierarchical DEA PCA approach," Energy Policy, Elsevier, vol. 36(10), pages 3993-4004, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:146:y:2020:i:c:p:2462-2471. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.