IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v114y2017ipbp455-463.html
   My bibliography  Save this article

Pilot scale fermentation coupled with anaerobic digestion of food waste - Effect of dynamic digestate recirculation

Author

Listed:
  • Gottardo, Marco
  • Micolucci, Federico
  • Bolzonella, David
  • Uellendahl, Hinrich
  • Pavan, Paolo

Abstract

The anaerobic digestion in double stage is a known and adopted system, but the process productivity and optimization still remain an aspect to investigate. The accumulation of organic acids (produced during fermentative metabolism) in the first stage generally decrease the pH below the optimal values (5.5). A pre-evaluation strategy by control charts for further pH control is proposed. The process combines in series the 1st Fermentation process and the 2nd Anaerobic Digestion process, using the recirculation of the anaerobic digestion effluent, rich in buffer agents, to control the pH in the 1st stage. The recycle ratio becomes a further operating parameter that should be properly managed. A proper management as dynamic recirculation flow allows to maintain the pH of the first phase to values higher than 5. Specific hydrogen production, specific methane production and volatile fatty acid production; 170 L/kgTVS at 40% H2, 750 L at 67% CH4 and 14 gCOD/L VFA were obtained respectively.

Suggested Citation

  • Gottardo, Marco & Micolucci, Federico & Bolzonella, David & Uellendahl, Hinrich & Pavan, Paolo, 2017. "Pilot scale fermentation coupled with anaerobic digestion of food waste - Effect of dynamic digestate recirculation," Renewable Energy, Elsevier, vol. 114(PB), pages 455-463.
  • Handle: RePEc:eee:renene:v:114:y:2017:i:pb:p:455-463
    DOI: 10.1016/j.renene.2017.07.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117306626
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.07.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Orive, M. & Cebrián, M. & Zufía, J., 2016. "Techno-economic anaerobic co-digestion feasibility study for two-phase olive oil mill pomace and pig slurry," Renewable Energy, Elsevier, vol. 97(C), pages 532-540.
    2. Valdez-Vazquez, Idania & Poggi-Varaldo, Héctor M., 2009. "Hydrogen production by fermentative consortia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1000-1013, June.
    3. Browne, James D. & Murphy, Jerry D., 2014. "The impact of increasing organic loading in two phase digestion of food waste," Renewable Energy, Elsevier, vol. 71(C), pages 69-76.
    4. Leite, Wanderli Rogério Moreira & Gottardo, Marco & Pavan, Paolo & Belli Filho, Paulo & Bolzonella, David, 2016. "Performance and energy aspects of single and two phase thermophilic anaerobic digestion of waste activated sludge," Renewable Energy, Elsevier, vol. 86(C), pages 1324-1331.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chatterjee, Biswabandhu & Mazumder, Debabrata, 2019. "Role of stage-separation in the ubiquitous development of Anaerobic Digestion of Organic Fraction of Municipal Solid Waste: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 439-469.
    2. Ling Zhao & Yang Gao & Jiaxing Sun & Yanan Wang & Congxin Wang & Shuai Yu & Zhen Wang & Jingyang Li & Ronghou Liu & Wei Kou, 2023. "The Role of Slurry Reflux in a Corn Stalk Continuous Anaerobic Digestion System: Performance and Microbial Community," IJERPH, MDPI, vol. 20(3), pages 1-11, January.
    3. Algapani, Dalal E. & Qiao, Wei & Ricci, Marina & Bianchi, Davide & M. Wandera, Simon & Adani, Fabrizio & Dong, Renjie, 2019. "Bio-hydrogen and bio-methane production from food waste in a two-stage anaerobic digestion process with digestate recirculation," Renewable Energy, Elsevier, vol. 130(C), pages 1108-1115.
    4. Theresa Menzel & Peter Neubauer & Stefan Junne, 2020. "Role of Microbial Hydrolysis in Anaerobic Digestion," Energies, MDPI, vol. 13(21), pages 1-29, October.
    5. Qin, Yu & Wu, Jing & Xiao, Benyi & Cong, Ming & Hojo, Toshimasa & Cheng, Jun & Li, Yu-You, 2019. "Strategy of adjusting recirculation ratio for biohythane production via recirculated temperature-phased anaerobic digestion of food waste," Energy, Elsevier, vol. 179(C), pages 1235-1245.
    6. Yang, Min & Watson, Jamison & Wang, Zixin & Si, Buchun & Jiang, Weizhong & Zhou, Bo & Zhang, Yuanhui, 2022. "Understanding and design of two-stage fermentation: A perspective of interspecies electron transfer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khan, Mohd Atiqueuzzaman & Ngo, Huu Hao & Guo, Wenshan & Liu, Yiwen & Zhang, Xinbo & Guo, Jianbo & Chang, Soon Woong & Nguyen, Dinh Duc & Wang, Jie, 2018. "Biohydrogen production from anaerobic digestion and its potential as renewable energy," Renewable Energy, Elsevier, vol. 129(PB), pages 754-768.
    2. Łukajtis, Rafał & Hołowacz, Iwona & Kucharska, Karolina & Glinka, Marta & Rybarczyk, Piotr & Przyjazny, Andrzej & Kamiński, Marian, 2018. "Hydrogen production from biomass using dark fermentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 665-694.
    3. Abdur Rawoof, Salma Aathika & Kumar, P. Senthil & Vo, Dai-Viet N. & Devaraj, Thiruselvi & Subramanian, Sivanesan, 2021. "Biohythane as a high potential fuel from anaerobic digestion of organic waste: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    4. Trad, Zaineb & Fontaine, Jean-Pierre & Larroche, Christian & Vial, Christophe, 2016. "Multiscale mixing analysis and modeling of biohydrogen production by dark fermentation," Renewable Energy, Elsevier, vol. 98(C), pages 264-282.
    5. Lavagnolo, Maria Cristina & Girotto, Francesca & Rafieenia, Razieh & Danieli, Luciano & Alibardi, Luca, 2018. "Two-stage anaerobic digestion of the organic fraction of municipal solid waste – Effects of process conditions during batch tests," Renewable Energy, Elsevier, vol. 126(C), pages 14-20.
    6. Gulhane, Madhuri & Pandit, Prabhakar & Khardenavis, Anshuman & Singh, Dharmesh & Purohit, Hemant, 2017. "Study of microbial community plasticity for anaerobic digestion of vegetable waste in Anaerobic Baffled Reactor," Renewable Energy, Elsevier, vol. 101(C), pages 59-66.
    7. Xuan, Jin & Leung, Michael K.H. & Leung, Dennis Y.C. & Ni, Meng, 2009. "A review of biomass-derived fuel processors for fuel cell systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1301-1313, August.
    8. Antonio Serrano & Fernando G. Fermoso & Bernabé Alonso-Fariñas & Guillermo Rodríguez-Gutiérrez & Sergio López & Juan Fernandez-Bolaños & Rafael Borja, 2019. "Long-Term Evaluation of Mesophilic Semi-Continuous Anaerobic Digestion of Olive Mill Solid Waste Pretreated with Steam-Explosion," Energies, MDPI, vol. 12(11), pages 1-13, June.
    9. Brémond, Ulysse & de Buyer, Raphaëlle & Steyer, Jean-Philippe & Bernet, Nicolas & Carrere, Hélène, 2018. "Biological pretreatments of biomass for improving biogas production: an overview from lab scale to full-scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 583-604.
    10. Sołowski, Gaweł & Shalaby, Marwa.S. & Abdallah, Heba & Shaban, Ahmed.M. & Cenian, Adam, 2018. "Production of hydrogen from biomass and its separation using membrane technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3152-3167.
    11. Hernández, M. & Rodríguez, M., 2013. "Hydrogen production by anaerobic digestion of pig manure: Effect of operating conditions," Renewable Energy, Elsevier, vol. 53(C), pages 187-192.
    12. Ortigueira, Joana & Pinto, Tiago & Gouveia, Luísa & Moura, Patrícia, 2015. "Production and storage of biohydrogen during sequential batch fermentation of Spirogyra hydrolyzate by Clostridium butyricum," Energy, Elsevier, vol. 88(C), pages 528-536.
    13. Ramírez-Arpide, Félix Rafael & Espinosa-Solares, Teodoro & Gallegos-Vázquez, Clemente & Santoyo-Cortés, Vinicio Horacio, 2019. "Bioenergy production from nopal cladodes and dairy cow manure on a farm-scale level: Challenges for its economic feasibility in Mexico," Renewable Energy, Elsevier, vol. 142(C), pages 383-392.
    14. Wieczorek, Nils & Kucuker, Mehmet Ali & Kuchta, Kerstin, 2014. "Fermentative hydrogen and methane production from microalgal biomass (Chlorella vulgaris) in a two-stage combined process," Applied Energy, Elsevier, vol. 132(C), pages 108-117.
    15. Mahmudul, H.M. & Rasul, M.G. & Akbar, D. & Narayanan, R. & Mofijur, M., 2022. "Food waste as a source of sustainable energy: Technical, economical, environmental and regulatory feasibility analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    16. Rajendran, Karthik & Mahapatra, Durgamadhab & Venkatraman, Arun Venkatesh & Muthuswamy, Shanmugaprakash & Pugazhendhi, Arivalagan, 2020. "Advancing anaerobic digestion through two-stage processes: Current developments and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    17. Luo, Gang & Xie, Li & Zou, Zhonghai & Zhou, Qi & Wang, Jing-Yuan, 2010. "Fermentative hydrogen production from cassava stillage by mixed anaerobic microflora: Effects of temperature and pH," Applied Energy, Elsevier, vol. 87(12), pages 3710-3717, December.
    18. Shivali Sahota & Subodh Kumar & Lidia Lombardi, 2024. "Biohythane, Biogas, and Biohydrogen Production from Food Waste: Recent Advancements, Technical Bottlenecks, and Prospects," Energies, MDPI, vol. 17(3), pages 1-27, January.
    19. Jakub Frankowski & Maciej Zaborowicz & Jacek Dach & Wojciech Czekała & Jacek Przybył, 2020. "Biological Waste Management in the Case of a Pandemic Emergency and Other Natural Disasters. Determination of Bioenergy Production from Floricultural Waste and Modeling of Methane Production Using Dee," Energies, MDPI, vol. 13(11), pages 1-15, June.
    20. Yang, Zhiman & Guo, Rongbo & Xu, Xiaohui & Fan, Xiaolei & Luo, Shengjun, 2011. "Fermentative hydrogen production from lipid-extracted microalgal biomass residues," Applied Energy, Elsevier, vol. 88(10), pages 3468-3472.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:114:y:2017:i:pb:p:455-463. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.