IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v113y2017icp1168-1181.html
   My bibliography  Save this article

Experimental thermal performance analysis of ground heat exchangers for space heating and cooling applications

Author

Listed:
  • Sivasakthivel, T.
  • Philippe, Mikael
  • Murugesan, K.
  • Verma, Vikas
  • Hu, Pingfang

Abstract

In recent decades, ground source heat pump systems have become popular for space heating and cooling applications. In both modes of operation, GSHP needs to interact with the ground through GHX. The thermal performance analysis of single and double U-tube heat exchangers are discussed in this paper by focusing on its effectiveness, ground temperatures, heat extraction & injection rate and its effects on surrounding ground formations. Initially the method of calculating length of GHX for a given heat load is explained, then the effectiveness of GHX is defined. Experimental set up used to study the performance of single and double U-tube GHX at bureau of geological and mining research (BRGM), France is explained. Results obtained from the experimental study shows that the average effectiveness of single U-tube heat exchanger in heating and cooling modes are 0.34 and 0.40 respectively and for double U-tube, it is 0.46 and 0.57 respectively. In both the heat exchangers, the average effectiveness is observed to be high in cooling mode operation, the reason may be that in cooling mode operation, the temperature difference between the heat carrier fluid and the ground is found to be high compared to the difference observed during heating mode operation.

Suggested Citation

  • Sivasakthivel, T. & Philippe, Mikael & Murugesan, K. & Verma, Vikas & Hu, Pingfang, 2017. "Experimental thermal performance analysis of ground heat exchangers for space heating and cooling applications," Renewable Energy, Elsevier, vol. 113(C), pages 1168-1181.
  • Handle: RePEc:eee:renene:v:113:y:2017:i:c:p:1168-1181
    DOI: 10.1016/j.renene.2017.06.098
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811730602X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.06.098?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kharseh, Mohamad & Altorkmany, Lobna & Al-Khawaja, Mohammed & Hassani, Ferri, 2015. "Analysis of the effect of global climate change on ground source heat pump systems in different climate categories," Renewable Energy, Elsevier, vol. 78(C), pages 219-225.
    2. Sivasakthivel, T. & Murugesan, K. & Thomas, H.R., 2014. "Optimization of operating parameters of ground source heat pump system for space heating and cooling by Taguchi method and utility concept," Applied Energy, Elsevier, vol. 116(C), pages 76-85.
    3. Esen, Hikmet & Inalli, Mustafa & Esen, Yuksel, 2009. "Temperature distributions in boreholes of a vertical ground-coupled heat pump system," Renewable Energy, Elsevier, vol. 34(12), pages 2672-2679.
    4. Kharseh, Mohamad & Altorkmany, Lobna, 2012. "How global warming and building envelope will change buildings energy use in central Europe," Applied Energy, Elsevier, vol. 97(C), pages 999-1004.
    5. Naili, Nabiha & Hazami, Majdi & Attar, Issam & Farhat, Abdelhamid, 2013. "In-field performance analysis of ground source cooling system with horizontal ground heat exchanger in Tunisia," Energy, Elsevier, vol. 61(C), pages 319-331.
    6. Sivasakthivel, T. & Murugesan, K. & Sahoo, P.K., 2014. "Optimization of ground heat exchanger parameters of ground source heat pump system for space heating applications," Energy, Elsevier, vol. 78(C), pages 573-586.
    7. Sivasakthivel, T. & Murugesan, K. & Sahoo, P.K., 2015. "Study of technical, economical and environmental viability of ground source heat pump system for Himalayan cities of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 452-462.
    8. Sivasakthivel, T. & Murugesan, K. & Sahoo, P.K., 2014. "A study on energy and CO2 saving potential of ground source heat pump system in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 278-293.
    9. Montagud, Carla & Corberán, José Miguel & Ruiz-Calvo, Félix, 2013. "Experimental and modeling analysis of a ground source heat pump system," Applied Energy, Elsevier, vol. 109(C), pages 328-336.
    10. Rivera, Jaime A. & Blum, Philipp & Bayer, Peter, 2015. "Analytical simulation of groundwater flow and land surface effects on thermal plumes of borehole heat exchangers," Applied Energy, Elsevier, vol. 146(C), pages 421-433.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lyu, Weihua & Li, Xianting & Yan, Shuai & Jiang, Sihang, 2020. "Utilizing shallow geothermal energy to develop an energy efficient HVAC system," Renewable Energy, Elsevier, vol. 147(P1), pages 672-682.
    2. Atwany, Hanin & Hamdan, Mohammad O. & Abu-Nabah, Bassam A. & Alami, Abdul Hai & Attom, Mousa, 2020. "Experimental evaluation of ground heat exchanger in UAE," Renewable Energy, Elsevier, vol. 159(C), pages 538-546.
    3. Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
    4. Kappler, Genyr & Dias, João Batista & Haeberle, Fernanda & Wander, Paulo Roberto & Moraes, Carlos Alberto Mendes & Modolo, Regina Célia Espinosa, 2019. "Study of an earth-to-water heat exchange system which relies on underground water tanks," Renewable Energy, Elsevier, vol. 133(C), pages 1236-1246.
    5. Joanna Piotrowska-Woroniak, 2021. "Determination of the Selected Wells Operational Power with Borehole Heat Exchangers Operating in Real Conditions, Based on Experimental Tests," Energies, MDPI, vol. 14(9), pages 1-21, April.
    6. Marco Belliardi & Nerio Cereghetti & Paola Caputo & Simone Ferrari, 2021. "A Method to Analyze the Performance of Geocooling Systems with Borehole Heat Exchangers. Results in a Monitored Residential Building in Southern Alps," Energies, MDPI, vol. 14(21), pages 1-18, November.
    7. Pu, Liang & Xu, Lingling & Zhang, Shengqi & Li, Yanzhong, 2019. "Optimization of ground heat exchanger using microencapsulated phase change material slurry based on tree-shaped structure," Applied Energy, Elsevier, vol. 240(C), pages 860-869.
    8. Bo Zhang & Long Shi & Wenxuan Zhang & Chao Huan & Yujiao Zhao & Jingyu Wang, 2023. "Numerical Investigation on the Performance of Horizontal Helical-Coil-Type Backfill Heat Exchangers with Different Configurations in Mine Stopes," Mathematics, MDPI, vol. 11(19), pages 1-21, October.
    9. Joanna Piotrowska-Woroniak, 2021. "Assessment of Ground Regeneration around Borehole Heat Exchangers between Heating Seasons in Cold Climates: A Case Study in Bialystok (NE, Poland)," Energies, MDPI, vol. 14(16), pages 1-32, August.
    10. Chwieduk, Michal, 2021. "New global thermal numerical model of vertical U-tube ground heat exchanger," Renewable Energy, Elsevier, vol. 168(C), pages 343-352.
    11. Syed Noman Danish & Abdelrahman El-Leathy & Mohanad Alata & Hany Al-Ansary, 2019. "Enhancing Solar Still Performance Using Vacuum Pump and Geothermal Energy," Energies, MDPI, vol. 12(3), pages 1-13, February.
    12. Bi, Yuehong & Lyu, Tianli & Wang, Hongyan & Sun, Ruirui & Yu, Meize, 2019. "Parameter analysis of single U-tube GHE and dynamic simulation of underground temperature field round one year for GSHP," Energy, Elsevier, vol. 174(C), pages 138-147.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    2. Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
    3. Sivasakthivel, T. & Murugesan, K. & Sahoo, P.K., 2015. "Study of technical, economical and environmental viability of ground source heat pump system for Himalayan cities of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 452-462.
    4. Al-Ameen, Yasameen & Ianakiev, Anton & Evans, Robert, 2018. "Recycling construction and industrial landfill waste material for backfill in horizontal ground heat exchanger systems," Energy, Elsevier, vol. 151(C), pages 556-568.
    5. Carotenuto, Alberto & Ciccolella, Michela & Massarotti, Nicola & Mauro, Alessandro, 2016. "Models for thermo-fluid dynamic phenomena in low enthalpy geothermal energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 330-355.
    6. Pandey, Navdeep & Murugesan, K. & Thomas, H.R., 2017. "Optimization of ground heat exchangers for space heating and cooling applications using Taguchi method and utility concept," Applied Energy, Elsevier, vol. 190(C), pages 421-438.
    7. Nikitin, Andrey & Farahnak, Mehdi & Deymi-Dashtebayaz, Mahdi & Muraveinikov, Sergei & Nikitina, Veronika & Nazeri, Reza, 2022. "Effect of ice thickness and snow cover depth on performance optimization of ground source heat pump based on the energy, exergy, economic and environmental analysis," Renewable Energy, Elsevier, vol. 185(C), pages 1301-1317.
    8. Vivek Aggarwal & Chandan Swaroop Meena & Ashok Kumar & Tabish Alam & Anuj Kumar & Arijit Ghosh & Aritra Ghosh, 2020. "Potential and Future Prospects of Geothermal Energy in Space Conditioning of Buildings: India and Worldwide Review," Sustainability, MDPI, vol. 12(20), pages 1-19, October.
    9. Xie, Yiwei & Hu, Pingfang & Zhu, Na & Lei, Fei & Xing, Lu & Xu, Linghong, 2020. "Collaborative optimization of ground source heat pump-radiant ceiling air conditioning system based on response surface method and NSGA-II," Renewable Energy, Elsevier, vol. 147(P1), pages 249-264.
    10. Xia, Lei & Ma, Zhenjun & Kokogiannakis, Georgios & Wang, Shugang & Gong, Xuemei, 2018. "A model-based optimal control strategy for ground source heat pump systems with integrated solar photovoltaic thermal collectors," Applied Energy, Elsevier, vol. 228(C), pages 1399-1412.
    11. Zhou, Zhihua & Wang, Xiaojuan & Zhang, Xiaoyan & Chen, Guanyi & Zuo, Jian & Pullen, Stephen, 2015. "Effectiveness of pavement-solar energy system – An experimental study," Applied Energy, Elsevier, vol. 138(C), pages 1-10.
    12. Yang, Yang & Zhou, Ling & Hang, Jianwei & Du, Danyang & Shi, Weidong & He, Zhaoming, 2021. "Energy characteristics and optimal design of diffuser meridian in an electrical submersible pump," Renewable Energy, Elsevier, vol. 167(C), pages 718-727.
    13. Noye, Sarah & Mulero Martinez, Rubén & Carnieletto, Laura & De Carli, Michele & Castelruiz Aguirre, Amaia, 2022. "A review of advanced ground source heat pump control: Artificial intelligence for autonomous and adaptive control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    14. Liu, Zhijian & Xu, Wei & Zhai, Xue & Qian, Cheng & Chen, Xi, 2017. "Feasibility and performance study of the hybrid ground-source heat pump system for one office building in Chinese heating dominated areas," Renewable Energy, Elsevier, vol. 101(C), pages 1131-1140.
    15. Ma, Zhenjun & Xia, Lei & Gong, Xuemei & Kokogiannakis, Georgios & Wang, Shugang & Zhou, Xinlei, 2020. "Recent advances and development in optimal design and control of ground source heat pump systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    16. Shibin Geng & Yong Li & Xu Han & Huiliang Lian & Hua Zhang, 2016. "Evaluation of Thermal Anomalies in Multi-Boreholes Field Considering the Effects of Groundwater Flow," Sustainability, MDPI, vol. 8(6), pages 1-19, June.
    17. Nie, S. & Huang, Z.C. & Huang, G.H. & Yu, L. & Liu, J., 2018. "Optimization of electric power systems with cost minimization and environmental-impact mitigation under multiple uncertainties," Applied Energy, Elsevier, vol. 221(C), pages 249-267.
    18. Bayer, Peter & de Paly, Michael & Beck, Markus, 2014. "Strategic optimization of borehole heat exchanger field for seasonal geothermal heating and cooling," Applied Energy, Elsevier, vol. 136(C), pages 445-453.
    19. Gunasekar, N. & Mohanraj, M. & Velmurugan, V., 2015. "Artificial neural network modeling of a photovoltaic-thermal evaporator of solar assisted heat pumps," Energy, Elsevier, vol. 93(P1), pages 908-922.
    20. Dai, L.H. & Shang, Y. & Li, X.L. & Li, S.F., 2016. "Analysis on the transient heat transfer process inside and outside the borehole for a vertical U-tube ground heat exchanger under short-term heat storage," Renewable Energy, Elsevier, vol. 87(P3), pages 1121-1129.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:113:y:2017:i:c:p:1168-1181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.