IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v112y2017icp425-443.html
   My bibliography  Save this article

Assessment of the economic appropriateness of the use of Stirling engine as additional part of a cogeneration system based on biomass gasification

Author

Listed:
  • Bartela, Łukasz
  • Kotowicz, Janusz
  • Remiorz, Leszek
  • Skorek-Osikowska, Anna
  • Dubiel, Klaudia

Abstract

This paper presents the results of analyses of two variants of a cogeneration system based on a biomass gasification process. The first variant is a classic system, where electricity is generated in a piston engine and the useful heat is obtained within the piston engine and in the raw process gas cooler. Due to the high ratio of the generated thermal power to electric power, this is an attractive variant, especially when there is a high and constant heat demand. The second analyzed variant assumes the additionally use a Stirling engine, which uses the high-temperature potential of the raw process gas to increase the electric power of system. Both variants were evaluated under variable market shares of two types of heat consumers: municipal and industrial users. Additionally, in the case of the system with the Stirling engine, the impact of a change in the degree of cooling of the process gas, which is realized within the Stirling engine, was examined. To determine the efficiency of the engine as a function of the degree of cooling, numerical model of a unit was created. System analyses enabled the determination of the characteristics of the thermodynamic and economic assessment indicators for both variants.

Suggested Citation

  • Bartela, Łukasz & Kotowicz, Janusz & Remiorz, Leszek & Skorek-Osikowska, Anna & Dubiel, Klaudia, 2017. "Assessment of the economic appropriateness of the use of Stirling engine as additional part of a cogeneration system based on biomass gasification," Renewable Energy, Elsevier, vol. 112(C), pages 425-443.
  • Handle: RePEc:eee:renene:v:112:y:2017:i:c:p:425-443
    DOI: 10.1016/j.renene.2017.05.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117304135
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.05.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kalina, Jacek, 2016. "Complex thermal energy conversion systems for efficient use of locally available biomass," Energy, Elsevier, vol. 110(C), pages 105-115.
    2. Pierobon, Leonardo & Rokni, Masoud & Larsen, Ulrik & Haglind, Fredrik, 2013. "Thermodynamic analysis of an integrated gasification solid oxide fuel cell plant combined with an organic Rankine cycle," Renewable Energy, Elsevier, vol. 60(C), pages 226-234.
    3. Machin, Einara Blanco & Pedroso, Daniel Travieso & Proenza, Nestor & Silveira, José Luz & Conti, Leonetto & Braga, Lúcia Bollini & Machin, Adrian Blanco, 2015. "Tar reduction in downdraft biomass gasifier using a primary method," Renewable Energy, Elsevier, vol. 78(C), pages 478-483.
    4. Kotowicz, Janusz & Sobolewski, Aleksander & Iluk, Tomasz, 2013. "Energetic analysis of a system integrated with biomass gasification," Energy, Elsevier, vol. 52(C), pages 265-278.
    5. Karellas, S. & Karl, J. & Kakaras, E., 2008. "An innovative biomass gasification process and its coupling with microturbine and fuel cell systems," Energy, Elsevier, vol. 33(2), pages 284-291.
    6. Forsell, Nicklas & Guerassimoff, Gilles & Athanassiadis, Dimitris & Thivolle-Casat, Alain & Lorne, Daphné & Millet, Guy & Assoumou, Edi, 2013. "Sub-national TIMES model for analyzing future regional use of biomass and biofuels in Sweden and France," Renewable Energy, Elsevier, vol. 60(C), pages 415-426.
    7. Marbe, Asa & Harvey, Simon, 2006. "Opportunities for integration of biofuel gasifiers in natural-gas combined heat-and-power plants in district-heating systems," Applied Energy, Elsevier, vol. 83(7), pages 723-748, July.
    8. Chacartegui, R. & Sánchez, D. & Muñoz, J.M. & Sánchez, T., 2009. "Alternative ORC bottoming cycles FOR combined cycle power plants," Applied Energy, Elsevier, vol. 86(10), pages 2162-2170, October.
    9. Day, A.R. & Ogumka, P. & Jones, P.G. & Dunsdon, A., 2009. "The use of the planning system to encourage low carbon energy technologies in buildings," Renewable Energy, Elsevier, vol. 34(9), pages 2016-2021.
    10. Pérez-Navarro, A. & Alfonso, D. & Ariza, H.E. & Cárcel, J. & Correcher, A. & Escrivá-Escrivá, G. & Hurtado, E. & Ibáñez, F. & Peñalvo, E. & Roig, R. & Roldán, C. & Sánchez, C. & Segura, I. & Vargas, C, 2016. "Experimental verification of hybrid renewable systems as feasible energy sources," Renewable Energy, Elsevier, vol. 86(C), pages 384-391.
    11. Gawlik, Lidia & Szurlej, Adam & Wyrwa, Artur, 2015. "The impact of the long-term EU target for renewables on the structure of electricity production in Poland," Energy, Elsevier, vol. 92(P2), pages 172-178.
    12. Mikielewicz, Dariusz & Wajs, Jan & Ziółkowski, Paweł & Mikielewicz, Jarosław, 2016. "Utilisation of waste heat from the power plant by use of the ORC aided with bleed steam and extra source of heat," Energy, Elsevier, vol. 97(C), pages 11-19.
    13. Skorek-Osikowska, Anna & Bartela, Łukasz & Kotowicz, Janusz & Sobolewski, Aleksander & Iluk, Tomasz & Remiorz, Leszek, 2014. "The influence of the size of the CHP (combined heat and power) system integrated with a biomass fueled gas generator and piston engine on the thermodynamic and economic effectiveness of electricity an," Energy, Elsevier, vol. 67(C), pages 328-340.
    14. Fiaschi, Daniele & Carta, Riccardo, 2007. "CO2 abatement by co-firing of natural gas and biomass-derived gas in a gas turbine," Energy, Elsevier, vol. 32(4), pages 549-567.
    15. Qiu, Guoquan, 2012. "Selection of working fluids for micro-CHP systems with ORC," Renewable Energy, Elsevier, vol. 48(C), pages 565-570.
    16. Rokni, Masoud, 2014. "Biomass gasification integrated with a solid oxide fuel cell and Stirling engine," Energy, Elsevier, vol. 77(C), pages 6-18.
    17. Badyda, Krzysztof & Krawczyk, Piotr & Pikoń, Krzysztof, 2016. "Relative environmental footprint of waste-based fuel burned in a power boiler in the context of end-of-waste criteria assigned to the fuel," Energy, Elsevier, vol. 100(C), pages 425-430.
    18. Leung, Dennis Y. C. & Yin, X. L. & Wu, C. Z., 2004. "A review on the development and commercialization of biomass gasification technologies in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(6), pages 565-580, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Majidniya, Mahdi & Remy, Benjamin & Boileau, Thierry & Zandi, Majid, 2021. "Free Piston Stirling Engine as a new heat recovery option for an Internal Reforming Solid Oxide Fuel Cell," Renewable Energy, Elsevier, vol. 171(C), pages 1188-1201.
    2. Kotowicz, Janusz & Węcel, Daniel & Jurczyk, Michał, 2018. "Analysis of component operation in power-to-gas-to-power installations," Applied Energy, Elsevier, vol. 216(C), pages 45-59.
    3. Cheng, Cai & Cherian, Jacob & Sial, Muhammad Safdar & Zaman, Umer & Niroumandi, Hosein, 2021. "Performance assessment of a novel biomass-based solid oxide fuel cell power generation cycle; Economic analysis and optimization," Energy, Elsevier, vol. 224(C).
    4. Skorek-Osikowska, Anna & Martín-Gamboa, Mario & Iribarren, Diego & García-Gusano, Diego & Dufour, Javier, 2020. "Thermodynamic, economic and environmental assessment of energy systems including the use of gas from manure fermentation in the context of the Spanish potential," Energy, Elsevier, vol. 200(C).
    5. Bartela, Łukasz & Kotowicz, Janusz & Dubiel-Jurgaś, Klaudia, 2018. "Investment risk for biomass integrated gasification combined heat and power unit with an internal combustion engine and a Stirling engine," Energy, Elsevier, vol. 150(C), pages 601-616.
    6. Zhang, Dong & Zheng, Yu & Wu, Jianghao & Li, Bingyang & Li, Jinping, 2020. "Annual energy characteristics and thermodynamic evaluation of combined heating, power and biogas system in cold rural area of Northwest China," Energy, Elsevier, vol. 192(C).
    7. Ștefan-Dominic Voronca & Monica Siroux & George Darie, 2022. "Experimental Characterization of Transitory Functioning Regimes of a Biomass Stirling Micro-CHP," Energies, MDPI, vol. 15(15), pages 1-23, July.
    8. Skorek-Osikowska, Anna & Kotowicz, Janusz & Uchman, Wojciech, 2017. "Thermodynamic assessment of the operation of a self-sufficient, biomass based district heating system integrated with a Stirling engine and biomass gasification," Energy, Elsevier, vol. 141(C), pages 1764-1778.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bartela, Łukasz & Kotowicz, Janusz & Dubiel-Jurgaś, Klaudia, 2018. "Investment risk for biomass integrated gasification combined heat and power unit with an internal combustion engine and a Stirling engine," Energy, Elsevier, vol. 150(C), pages 601-616.
    2. Skorek-Osikowska, Anna & Kotowicz, Janusz & Uchman, Wojciech, 2017. "Thermodynamic assessment of the operation of a self-sufficient, biomass based district heating system integrated with a Stirling engine and biomass gasification," Energy, Elsevier, vol. 141(C), pages 1764-1778.
    3. Elsner, Witold & Wysocki, Marian & Niegodajew, Paweł & Borecki, Roman, 2017. "Experimental and economic study of small-scale CHP installation equipped with downdraft gasifier and internal combustion engine," Applied Energy, Elsevier, vol. 202(C), pages 213-227.
    4. Jia, Junxi & Abudula, Abuliti & Wei, Liming & Sun, Baozhi & Shi, Yue, 2015. "Thermodynamic modeling of an integrated biomass gasification and solid oxide fuel cell system," Renewable Energy, Elsevier, vol. 81(C), pages 400-410.
    5. Ud Din, Zia & Zainal, Z.A., 2016. "Biomass integrated gasification–SOFC systems: Technology overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1356-1376.
    6. Eveloy, Valerie & Rodgers, Peter & Al Alili, Ali, 2017. "Multi-objective optimization of a pressurized solid oxide fuel cell – gas turbine hybrid system integrated with seawater reverse osmosis," Energy, Elsevier, vol. 123(C), pages 594-614.
    7. Kotowicz, Janusz & Michalski, Sebastian, 2015. "Influence of four-end HTM (high temperature membrane) parameters on the thermodynamic and economic characteristics of a supercritical power plant," Energy, Elsevier, vol. 81(C), pages 662-673.
    8. Naraharisetti, Pavan Kumar & Lakshminarayanan, S. & Karimi, I.A., 2014. "Design of biomass and natural gas based IGFC using multi-objective optimization," Energy, Elsevier, vol. 73(C), pages 635-652.
    9. Wang, Jiangjiang & Mao, Tianzhi & Sui, Jun & Jin, Hongguang, 2015. "Modeling and performance analysis of CCHP (combined cooling, heating and power) system based on co-firing of natural gas and biomass gasification gas," Energy, Elsevier, vol. 93(P1), pages 801-815.
    10. Vialetto, Giulio & Rokni, Masoud, 2015. "Innovative household systems based on solid oxide fuel cells for a northern European climate," Renewable Energy, Elsevier, vol. 78(C), pages 146-156.
    11. Pantaleo, Antonio M. & Camporeale, Sergio M. & Sorrentino, Arianna & Miliozzi, Adio & Shah, Nilay & Markides, Christos N., 2020. "Hybrid solar-biomass combined Brayton/organic Rankine-cycle plants integrated with thermal storage: Techno-economic feasibility in selected Mediterranean areas," Renewable Energy, Elsevier, vol. 147(P3), pages 2913-2931.
    12. Janusz Kotowicz & Sebastian Michalski & Mateusz Brzęczek, 2019. "The Characteristics of a Modern Oxy-Fuel Power Plant," Energies, MDPI, vol. 12(17), pages 1-34, September.
    13. Haghighat Mamaghani, Alireza & Najafi, Behzad & Shirazi, Ali & Rinaldi, Fabio, 2015. "4E analysis and multi-objective optimization of an integrated MCFC (molten carbonate fuel cell) and ORC (organic Rankine cycle) system," Energy, Elsevier, vol. 82(C), pages 650-663.
    14. Eveloy, Valérie & Rodgers, Peter & Qiu, Linyue, 2016. "Performance investigation of a power, heating and seawater desalination poly-generation scheme in an off-shore oil field," Energy, Elsevier, vol. 98(C), pages 26-39.
    15. Orlando Corigliano & Leonardo Pagnotta & Petronilla Fragiacomo, 2022. "On the Technology of Solid Oxide Fuel Cell (SOFC) Energy Systems for Stationary Power Generation: A Review," Sustainability, MDPI, vol. 14(22), pages 1-73, November.
    16. Kotowicz, Janusz & Michalski, Sebastian, 2016. "Thermodynamic and economic analysis of a supercritical and an ultracritical oxy-type power plant without and with waste heat recovery," Applied Energy, Elsevier, vol. 179(C), pages 806-820.
    17. Buonomano, Annamaria & Calise, Francesco & d’Accadia, Massimo Dentice & Palombo, Adolfo & Vicidomini, Maria, 2015. "Hybrid solid oxide fuel cells–gas turbine systems for combined heat and power: A review," Applied Energy, Elsevier, vol. 156(C), pages 32-85.
    18. Kamyar Darvish & Mehdi A. Ehyaei & Farideh Atabi & Marc A. Rosen, 2015. "Selection of Optimum Working Fluid for Organic Rankine Cycles by Exergy and Exergy-Economic Analyses," Sustainability, MDPI, vol. 7(11), pages 1-22, November.
    19. Ziółkowski, Paweł & Badur, Janusz & Ziółkowski, Piotr Józef, 2019. "An energetic analysis of a gas turbine with regenerative heating using turbine extraction at intermediate pressure - Brayton cycle advanced according to Szewalski's idea," Energy, Elsevier, vol. 185(C), pages 763-786.
    20. Gadsbøll, Rasmus Østergaard & Thomsen, Jesper & Bang-Møller, Christian & Ahrenfeldt, Jesper & Henriksen, Ulrik Birk, 2017. "Solid oxide fuel cells powered by biomass gasification for high efficiency power generation," Energy, Elsevier, vol. 131(C), pages 198-206.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:112:y:2017:i:c:p:425-443. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.