IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v92y2015ip2p172-178.html
   My bibliography  Save this article

The impact of the long-term EU target for renewables on the structure of electricity production in Poland

Author

Listed:
  • Gawlik, Lidia
  • Szurlej, Adam
  • Wyrwa, Artur

Abstract

This paper outlines the results of various scenarios for optimizing Poland's future energy system up to 2050. The objective of the study was to demonstrate through the use of models how the level of binding targets for the share of renewable energy (RES) in final energy consumption would impact the evolution of the Polish energy sector. The differences in the compared scenarios consist of the level of RES (renewable energy sources) targets while assuming the same ETS (emissions trading system) CO2 reduction pathways. These scenarios of differing RES targets are compared with other ones where the level of RES obligatory for 2020 has not been increased in the 2020–2050 period. The lack of increasing RES targets applies no preference for any particular technology, and the resulting energy mix is cost-optimal.

Suggested Citation

  • Gawlik, Lidia & Szurlej, Adam & Wyrwa, Artur, 2015. "The impact of the long-term EU target for renewables on the structure of electricity production in Poland," Energy, Elsevier, vol. 92(P2), pages 172-178.
  • Handle: RePEc:eee:energy:v:92:y:2015:i:p2:p:172-178
    DOI: 10.1016/j.energy.2015.05.066
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215006477
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.05.066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jonek-Kowalska, Izabela, 2018. "How do turbulent sectoral conditions sector influence the value of coal mining enterprises? Perspectives from the Central-Eastern Europe coal mining industry," Resources Policy, Elsevier, vol. 55(C), pages 103-112.
    2. Waldemar Izdebski & Katarzyna Kosiorek, 2023. "Analysis and Evaluation of the Possibility of Electricity Production from Small Photovoltaic Installations in Poland," Energies, MDPI, vol. 16(2), pages 1, January.
    3. Dariusz Fuksa, 2021. "Opportunities and Threats for Polish Power Industry and for Polish Coal: A Case Study in Poland," Energies, MDPI, vol. 14(20), pages 1-14, October.
    4. Bartosz Ceran, 2020. "Multi-Criteria Comparative Analysis of Clean Hydrogen Production Scenarios," Energies, MDPI, vol. 13(16), pages 1-21, August.
    5. Bartela, Łukasz, 2020. "A hybrid energy storage system using compressed air and hydrogen as the energy carrier," Energy, Elsevier, vol. 196(C).
    6. Anna Bluszcz & Anna Manowska, 2020. "Differentiation of the Level of Sustainable Development of Energy Markets in the European Union Countries," Energies, MDPI, vol. 13(18), pages 1-20, September.
    7. Ceran, Bartosz, 2019. "The concept of use of PV/WT/FC hybrid power generation system for smoothing the energy profile of the consumer," Energy, Elsevier, vol. 167(C), pages 853-865.
    8. Kopacz, Michał & Sobczyk, Eugeniusz J. & Galica, Dominik, 2018. "The impact of variability and correlation of selected geological parameters on the economic assessment of bituminous coal deposits with use of non-parametric bootstrap and copula-based Monte Carlo sim," Resources Policy, Elsevier, vol. 55(C), pages 171-183.
    9. Wyrwa, Artur & Suwała, Wojciech & Pluta, Marcin & Raczyński, Maciej & Zyśk, Janusz & Tokarski, Stanisław, 2022. "A new approach for coupling the short- and long-term planning models to design a pathway to carbon neutrality in a coal-based power system," Energy, Elsevier, vol. 239(PE).
    10. Karol Tucki & Małgorzata Krzywonos & Olga Orynycz & Adam Kupczyk & Anna Bączyk & Izabela Wielewska, 2021. "Analysis of the Possibility of Fulfilling the Paris Agreement by the Visegrad Group Countries," Sustainability, MDPI, vol. 13(16), pages 1-21, August.
    11. Przemysław Kaszyński & Jacek Kamiński, 2020. "Coal Demand and Environmental Regulations: A Case Study of the Polish Power Sector," Energies, MDPI, vol. 13(6), pages 1-24, March.
    12. Sylwester Robak & Robert Raczkowski & Michał Piekarz, 2023. "Development of the Wind Generation Sector and Its Effect on the Grid Operation—The Case of Poland," Energies, MDPI, vol. 16(19), pages 1-16, September.
    13. Bartela, Łukasz & Kotowicz, Janusz & Remiorz, Leszek & Skorek-Osikowska, Anna & Dubiel, Klaudia, 2017. "Assessment of the economic appropriateness of the use of Stirling engine as additional part of a cogeneration system based on biomass gasification," Renewable Energy, Elsevier, vol. 112(C), pages 425-443.
    14. Dariusz Mikielewicz & Krzysztof Kosowski & Karol Tucki & Marian Piwowarski & Robert Stępień & Olga Orynycz & Wojciech Włodarski, 2019. "Influence of Different Biofuels on the Efficiency of Gas Turbine Cycles for Prosumer and Distributed Energy Power Plants," Energies, MDPI, vol. 12(16), pages 1-21, August.
    15. Marcin Pluta & Artur Wyrwa & Janusz Zyśk & Wojciech Suwała & Maciej Raczyński, 2023. "Scenario Analysis of the Development of the Polish Power System towards Achieving Climate Neutrality in 2050," Energies, MDPI, vol. 16(16), pages 1-25, August.
    16. Marco Quatrosi, 2020. "Analysis of monthly CO2 emission trends for major EU Countries: a time series approach," SEEDS Working Papers 1520, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Nov 2020.
    17. Kotowicz, Janusz & Bartela, Łukasz & Węcel, Daniel & Dubiel, Klaudia, 2017. "Hydrogen generator characteristics for storage of renewably-generated energy," Energy, Elsevier, vol. 118(C), pages 156-171.
    18. Karol Tucki & Olga Orynycz & Andrzej Wasiak & Antoni Świć & Wojciech Dybaś, 2019. "Capacity Market Implementation in Poland: Analysis of a Survey on Consequences for the Electricity Market and for Energy Management," Energies, MDPI, vol. 12(5), pages 1-16, March.
    19. Skorek-Osikowska, Anna & Kotowicz, Janusz & Uchman, Wojciech, 2017. "Thermodynamic assessment of the operation of a self-sufficient, biomass based district heating system integrated with a Stirling engine and biomass gasification," Energy, Elsevier, vol. 141(C), pages 1764-1778.
    20. Marcin Pluta & Artur Wyrwa & Wojciech Suwała & Janusz Zyśk & Maciej Raczyński & Stanisław Tokarski, 2020. "A Generalized Unit Commitment and Economic Dispatch Approach for Analysing the Polish Power System under High Renewable Penetration," Energies, MDPI, vol. 13(8), pages 1-18, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:92:y:2015:i:p2:p:172-178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.