IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v105y2017icp400-406.html
   My bibliography  Save this article

Biodiesel production potential of oleaginous Rhodococcus opacus grown on biomass gasification wastewater

Author

Listed:
  • Goswami, Lalit
  • Tejas Namboodiri, M.M.
  • Vinoth Kumar, R.
  • Pakshirajan, Kannan
  • Pugazhenthi, G.

Abstract

This study examined the valorization of biomass gasification wastewater (BGWW) for lipids accumulation by Rhodococcus opacus and potential biodiesel application. Using synthetic mineral media based BGWW, the bacterium accumulated a maximum 65.8% (w/w) of lipids. 10% (v/v) inoculum size showed a more positive effect than 5% (v/v) inoculum size on both the chemical oxygen demand (COD) removal and lipid accumulation by R. opacus. Using the raw wastewater (untreated), the bacterium accumulated 54.3% (w/w) lipid with a wastewater COD removal efficiency of 64%. However, these values were further enhanced to 62.8% (w/w) and 74%, respectively, following supplementation of the wastewater with mineral salt media in the ratio 4:1. 1H and 13C nuclear magnetic resonance (NMR) spectroscopy analyses of the accumulated lipids revealed the presence of more saturated fatty acids than unsaturated fatty acids. Thermogravimetric analysis (TGA) of the accumulated lipids showed four thermal decomposition regions each with a good stability. Transesterification of the bacterial lipids to biodiesel and its properties revealed a very good potential of the strain for the production of biodiesel from PAH containing wastewater.

Suggested Citation

  • Goswami, Lalit & Tejas Namboodiri, M.M. & Vinoth Kumar, R. & Pakshirajan, Kannan & Pugazhenthi, G., 2017. "Biodiesel production potential of oleaginous Rhodococcus opacus grown on biomass gasification wastewater," Renewable Energy, Elsevier, vol. 105(C), pages 400-406.
  • Handle: RePEc:eee:renene:v:105:y:2017:i:c:p:400-406
    DOI: 10.1016/j.renene.2016.12.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116311016
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.12.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Silva, Wellington Costa & Castro, Maria Priscila Pessanha & Perez, Victor Haber & Machado, Francisco A. & Mota, Leonardo & Sthel, Marcelo Silva, 2016. "Thermal degradation of ethanolic biodiesel: Physicochemical and thermal properties evaluation," Energy, Elsevier, vol. 114(C), pages 1093-1099.
    2. Phuphuakrat, Thana & Namioka, Tomoaki & Yoshikawa, Kunio, 2010. "Tar removal from biomass pyrolysis gas in two-step function of decomposition and adsorption," Applied Energy, Elsevier, vol. 87(7), pages 2203-2211, July.
    3. Kumar, Vikram & Muthuraj, Muthusivaramapandian & Palabhanvi, Basavaraj & Ghoshal, Aloke Kumar & Das, Debasish, 2014. "Evaluation and optimization of two stage sequential in situ transesterification process for fatty acid methyl ester quantification from microalgae," Renewable Energy, Elsevier, vol. 68(C), pages 560-569.
    4. Hernández, J.J. & Ballesteros, R. & Aranda, G., 2013. "Characterisation of tars from biomass gasification: Effect of the operating conditions," Energy, Elsevier, vol. 50(C), pages 333-342.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdelhamid Ajbar & Rubayyi T. Alqahtani & Salihu S. Musa, 2022. "Static and Dynamic Analysis of a Continuous Bioreactor Model for the Production of Biofuel from Refinery Wastewater Using Rhodococcus opacus," Mathematics, MDPI, vol. 10(16), pages 1-12, August.
    2. Garlapati, Vijay Kumar & Chandel, Anuj K. & Kumar, S.P. Jeevan & Sharma, Swati & Sevda, Surajbhan & Ingle, Avinash P. & Pant, Deepak, 2020. "Circular economy aspects of lignin: Towards a lignocellulose biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    3. Gabriel Talero & Yasuki Kansha, 2022. "Simulation of the Steam Gasification of Japanese Waste Wood in an Indirectly Heated Downdraft Reactor Using PRO/II™: Numerical Comparison of Stoichiometric and Kinetic Models," Energies, MDPI, vol. 15(12), pages 1-19, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Unyaphan, Siriwat & Tarnpradab, Thanyawan & Takahashi, Fumitake & Yoshikawa, Kunio, 2017. "Improvement of tar removal performance of oil scrubber by producing syngas microbubbles," Applied Energy, Elsevier, vol. 205(C), pages 802-812.
    2. Liu, Zihan & Li, Pan & Chang, Chun & Wang, Xianhua & Song, Jiande & Fang, Shuqi & Pang, Shusheng, 2022. "Influence of metal chloride modified biochar on products characteristics from biomass catalytic pyrolysis," Energy, Elsevier, vol. 250(C).
    3. Setyawan, M. Ismail Bagus & Dafiqurrohman, Hafif & Akbar, Maha Hidayatullah & Surjosatyo, Adi, 2021. "Characterizing a two-stage downdraft biomass gasifier using a representative particle model," Renewable Energy, Elsevier, vol. 173(C), pages 750-767.
    4. Zane Vincevica-Gaile & Varvara Sachpazidou & Valdis Bisters & Maris Klavins & Olga Anne & Inga Grinfelde & Emil Hanc & William Hogland & Muhammad Asim Ibrahim & Yahya Jani & Mait Kriipsalu & Divya Pal, 2022. "Applying Macroalgal Biomass as an Energy Source: Utility of the Baltic Sea Beach Wrack for Thermochemical Conversion," Sustainability, MDPI, vol. 14(21), pages 1-18, October.
    5. Berrueco, C. & Montané, D. & Matas Güell, B. & del Alamo, G., 2014. "Effect of temperature and dolomite on tar formation during gasification of torrefied biomass in a pressurized fluidized bed," Energy, Elsevier, vol. 66(C), pages 849-859.
    6. Taghizadeh-Alisaraei, Ahmad & Assar, Hossein Alizadeh & Ghobadian, Barat & Motevali, Ali, 2017. "Potential of biofuel production from pistachio waste in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 510-522.
    7. Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
    8. Jiao, Shouhui & Wang, Feng & Wang, Lili & Biney, Bernard Wiafe & Liu, He & Chen, Kun & Guo, Aijun & Sun, Lanyi & Wang, Zongxian, 2022. "Systematic identification and distribution analysis of olefins in FCC slurry oil," Energy, Elsevier, vol. 239(PA).
    9. Fan, Yuyang & Tippayawong, Nakorn & Wei, Guoqiang & Huang, Zhen & Zhao, Kun & Jiang, Liqun & Zheng, Anqing & Zhao, Zengli & Li, Haibin, 2020. "Minimizing tar formation whilst enhancing syngas production by integrating biomass torrefaction pretreatment with chemical looping gasification," Applied Energy, Elsevier, vol. 260(C).
    10. Asadullah, Mohammad, 2014. "Biomass gasification gas cleaning for downstream applications: A comparative critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 118-132.
    11. Veksha, Andrei & Giannis, Apostolos & Yuan, Guoan & Tng, Jiahui & Chan, Wei Ping & Chang, Victor W.-C. & Lisak, Grzegorz & Lim, Teik-Thye, 2019. "Distribution and modeling of tar compounds produced during downdraft gasification of municipal solid waste," Renewable Energy, Elsevier, vol. 136(C), pages 1294-1303.
    12. Yang, S.I. & Wu, M.S. & Wu, C.Y., 2014. "Application of biomass fast pyrolysis part I: Pyrolysis characteristics and products," Energy, Elsevier, vol. 66(C), pages 162-171.
    13. Szewczyk, Dariusz & Ślefarski, Rafał & Jankowski, Radosław, 2017. "Analysis of the combustion process of syngas fuels containing high hydrocarbons and nitrogen compounds in Zonal Volumetric Combustion technology," Energy, Elsevier, vol. 121(C), pages 716-725.
    14. Csaba Fogarassy & Laszlo Toth & Marton Czikkely & David Christian Finger, 2019. "Improving the Efficiency of Pyrolysis and Increasing the Quality of Gas Production through Optimization of Prototype Systems," Resources, MDPI, vol. 8(4), pages 1-14, December.
    15. Gao, Ningbo & Salisu, Jamilu & Quan, Cui & Williams, Paul, 2021. "Modified nickel-based catalysts for improved steam reforming of biomass tar: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    16. Gunarathne, Duleeka Sandamali & Mueller, Andreas & Fleck, Sabine & Kolb, Thomas & Chmielewski, Jan Karol & Yang, Weihong & Blasiak, Wlodzimierz, 2014. "Gasification characteristics of steam exploded biomass in an updraft pilot scale gasifier," Energy, Elsevier, vol. 71(C), pages 496-506.
    17. Fantozzi, F. & Frassoldati, A. & Bartocci, P. & Cinti, G. & Quagliarini, F. & Bidini, G. & Ranzi, E.M., 2016. "An experimental and kinetic modeling study of glycerol pyrolysis," Applied Energy, Elsevier, vol. 184(C), pages 68-76.
    18. Zhang, Guozhao & Liu, Hao & Wang, Jia & Wu, Baojia, 2018. "Catalytic gasification characteristics of rice husk with calcined dolomite," Energy, Elsevier, vol. 165(PB), pages 1173-1177.
    19. Bartocci, Pietro & Bidini, Gianni & Asdrubali, Francesco & Beatrice, Carlo & Frusteri, Francesco & Fantozzi, Francesco, 2018. "Batch pyrolysis of pellet made of biomass and crude glycerol: Mass and energy balances," Renewable Energy, Elsevier, vol. 124(C), pages 172-179.
    20. Chen, Hongfang & Namioka, Tomoaki & Yoshikawa, Kunio, 2011. "Characteristics of tar, NOx precursors and their absorption performance with different scrubbing solvents during the pyrolysis of sewage sludge," Applied Energy, Elsevier, vol. 88(12), pages 5032-5041.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:105:y:2017:i:c:p:400-406. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.