IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v96y2011i9p1092-1113.html
   My bibliography  Save this article

Mixed aleatory-epistemic uncertainty quantification with stochastic expansions and optimization-based interval estimation

Author

Listed:
  • Eldred, M.S.
  • Swiler, L.P.
  • Tang, G.

Abstract

Uncertainty quantification (UQ) is the process of determining the effect of input uncertainties on response metrics of interest. These input uncertainties may be characterized as either aleatory uncertainties, which are irreducible variabilities inherent in nature, or epistemic uncertainties, which are reducible uncertainties resulting from a lack of knowledge. When both aleatory and epistemic uncertainties are mixed, it is desirable to maintain a segregation between aleatory and epistemic sources such that it is easy to separate and identify their contributions to the total uncertainty. Current production analyses for mixed UQ employ the use of nested sampling, where each sample taken from epistemic distributions at the outer loop results in an inner loop sampling over the aleatory probability distributions. This paper demonstrates new algorithmic capabilities for mixed UQ in which the analysis procedures are more closely tailored to the requirements of aleatory and epistemic propagation. Through the combination of stochastic expansions for computing statistics and interval optimization for computing bounds, interval-valued probability, second-order probability, and Dempster–Shafer evidence theory approaches to mixed UQ are shown to be more accurate and efficient than previously achievable.

Suggested Citation

  • Eldred, M.S. & Swiler, L.P. & Tang, G., 2011. "Mixed aleatory-epistemic uncertainty quantification with stochastic expansions and optimization-based interval estimation," Reliability Engineering and System Safety, Elsevier, vol. 96(9), pages 1092-1113.
  • Handle: RePEc:eee:reensy:v:96:y:2011:i:9:p:1092-1113
    DOI: 10.1016/j.ress.2010.11.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832011000639
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2010.11.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. Huang & T. Allen & W. Notz & N. Zeng, 2006. "Global Optimization of Stochastic Black-Box Systems via Sequential Kriging Meta-Models," Journal of Global Optimization, Springer, vol. 34(3), pages 441-466, March.
    2. Storlie, Curtis B. & Swiler, Laura P. & Helton, Jon C. & Sallaberry, Cedric J., 2009. "Implementation and evaluation of nonparametric regression procedures for sensitivity analysis of computationally demanding models," Reliability Engineering and System Safety, Elsevier, vol. 94(11), pages 1735-1763.
    3. Norbert Kuschel & Rüdiger Rackwitz, 1997. "Two basic problems in reliability-based structural optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 46(3), pages 309-333, October.
    4. Ferson, Scott & Troy Tucker, W., 2006. "Sensitivity analysis using probability bounding," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1435-1442.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao, Mi & Zhang, Jinhao & Gao, Liang, 2021. "A Kriging-assisted sampling method for reliability analysis of structures with hybrid uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    2. Michael J. Pennock & William B. Rouse, 2016. "The Epistemology of Enterprises," Systems Engineering, John Wiley & Sons, vol. 19(1), pages 24-43, January.
    3. Pietro Congedo & Jeroen Witteveen & Gianluca Iaccarino, 2013. "A simplex-based numerical framework for simple and efficient robust design optimization," Computational Optimization and Applications, Springer, vol. 56(1), pages 231-251, September.
    4. Rahman, S. & Karanki, D.R. & Epiney, A. & Wicaksono, D. & Zerkak, O. & Dang, V.N., 2018. "Deterministic sampling for propagating epistemic and aleatory uncertainty in dynamic event tree analysis," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 62-78.
    5. Palash Dutta, 2019. "Structural Reliability Analysis with Inverse Credibility Distributions," New Mathematics and Natural Computation (NMNC), World Scientific Publishing Co. Pte. Ltd., vol. 15(01), pages 47-63, March.
    6. Yoo, Yeongmin & Jung, Ui-Jin & Han, Yong Ha & Lee, Jongsoo, 2021. "Data Augmentation-Based Prediction of System Level Performance under Model and Parameter Uncertainties: Role of Designable Generative Adversarial Networks (DGAN)," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    7. Rocchetta, Roberto & Crespo, Luis G., 2021. "A scenario optimization approach to reliability-based and risk-based design: Soft-constrained modulation of failure probability bounds," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    8. Chen, Wen-Bin & Li, Xiao-Yang & Kang, Rui, 2022. "Integration for degradation analysis with multi-source ADT datasets considering dataset discrepancies and epistemic uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    9. Lv, Y. & Yan, X.D. & Sun, W. & Gao, Z.Y., 2015. "A risk-based method for planning of bus–subway corridor evacuation under hybrid uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 188-199.
    10. Helton, Jon C. & Brooks, Dusty M. & Sallaberry, Cédric J., 2020. "Property values associated with the failure of individual links in a system with multiple weak and strong links," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    11. Shamsi, Mohammad Haris & Ali, Usman & Mangina, Eleni & O’Donnell, James, 2020. "A framework for uncertainty quantification in building heat demand simulations using reduced-order grey-box energy models," Applied Energy, Elsevier, vol. 275(C).
    12. Chemweno, Peter & Pintelon, Liliane & Muchiri, Peter Nganga & Van Horenbeek, Adriaan, 2018. "Risk assessment methodologies in maintenance decision making: A review of dependability modelling approaches," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 64-77.
    13. Wang, Chong & Matthies, Hermann G., 2019. "Novel model calibration method via non-probabilistic interval characterization and Bayesian theory," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 84-92.
    14. Salomon, Julian & Winnewisser, Niklas & Wei, Pengfei & Broggi, Matteo & Beer, Michael, 2021. "Efficient reliability analysis of complex systems in consideration of imprecision," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    15. Shah, Harsheel & Hosder, Serhat & Winter, Tyler, 2015. "Quantification of margins and mixed uncertainties using evidence theory and stochastic expansions," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 59-72.
    16. Song, Yufei & Mi, Jinhua & Cheng, Yuhua & Bai, Libing & Chen, Kai, 2020. "A dependency bounds analysis method for reliability assessment of complex system with hybrid uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    17. Riley, Matthew E., 2015. "Evidence-based quantification of uncertainties induced via simulation-based modeling," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 79-86.
    18. Rockafellar, R.T. & Royset, J.O. & Miranda, S.I., 2014. "Superquantile regression with applications to buffered reliability, uncertainty quantification, and conditional value-at-risk," European Journal of Operational Research, Elsevier, vol. 234(1), pages 140-154.
    19. Liu, H.B. & Jiang, C. & Jia, X.Y. & Long, X.Y. & Zhang, Z. & Guan, F.J., 2018. "A new uncertainty propagation method for problems with parameterized probability-boxes," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 64-73.
    20. Mi, Jinhua & Lu, Ning & Li, Yan-Feng & Huang, Hong-Zhong & Bai, Libing, 2022. "An evidential network-based hierarchical method for system reliability analysis with common cause failures and mixed uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    21. Helton, Jon C. & Brooks, Dusty M. & Sallaberry, Cédric J., 2020. "Margins associated with loss of assured safety for systems with multiple weak links and strong links," Reliability Engineering and System Safety, Elsevier, vol. 195(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raymond K. W. Wong & Curtis B. Storlie & Thomas C. M. Lee, 2017. "A frequentist approach to computer model calibration," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 635-648, March.
    2. Ehsan Mehdad & Jack P. C. Kleijnen, 2018. "Efficient global optimisation for black-box simulation via sequential intrinsic Kriging," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 69(11), pages 1725-1737, November.
    3. Zheng, Liang & Xue, Xinfeng & Xu, Chengcheng & Ran, Bin, 2019. "A stochastic simulation-based optimization method for equitable and efficient network-wide signal timing under uncertainties," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 287-308.
    4. Helton, Jon C. & Johnson, Jay D. & Sallaberry, Cédric J., 2011. "Quantification of margins and uncertainties: Example analyses from reactor safety and radioactive waste disposal involving the separation of aleatory and epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 96(9), pages 1014-1033.
    5. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    6. Songhao Wang & Szu Hui Ng & William Benjamin Haskell, 2022. "A Multilevel Simulation Optimization Approach for Quantile Functions," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 569-585, January.
    7. Matieyendou Lamboni, 2020. "Uncertainty quantification: a minimum variance unbiased (joint) estimator of the non-normalized Sobol’ indices," Statistical Papers, Springer, vol. 61(5), pages 1939-1970, October.
    8. Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
    9. Diariétou Sambakhé & Lauriane Rouan & Jean-Noël Bacro & Eric Gozé, 2019. "Conditional optimization of a noisy function using a kriging metamodel," Journal of Global Optimization, Springer, vol. 73(3), pages 615-636, March.
    10. Wang, Tianzhe & Chen, Zequan & Li, Guofa & He, Jialong & Liu, Chao & Du, Xuejiao, 2024. "A novel method for high-dimensional reliability analysis based on activity score and adaptive Kriging," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    11. Rocchetta, Roberto & Crespo, Luis G., 2021. "A scenario optimization approach to reliability-based and risk-based design: Soft-constrained modulation of failure probability bounds," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    12. Tianyang Wang & James S. Dyer & Warren J. Hahn, 2017. "Sensitivity analysis of decision making under dependent uncertainties using copulas," EURO Journal on Decision Processes, Springer;EURO - The Association of European Operational Research Societies, vol. 5(1), pages 117-139, November.
    13. Peyman Bahrami & Farzan Sahari Moghaddam & Lesley A. James, 2022. "A Review of Proxy Modeling Highlighting Applications for Reservoir Engineering," Energies, MDPI, vol. 15(14), pages 1-32, July.
    14. Ning-Cong Xiao & Hong-Zhong Huang & Yan-Feng Li & Zhonglai Wang & Xiao-Ling Zhang, 2013. "Non-probabilistic reliability sensitivity analysis of the model of structural systems with interval variables whose state of dependence is determined by constraints," Journal of Risk and Reliability, , vol. 227(5), pages 491-498, October.
    15. Qi Fan & Jiaqiao Hu, 2018. "Surrogate-Based Promising Area Search for Lipschitz Continuous Simulation Optimization," INFORMS Journal on Computing, INFORMS, vol. 30(4), pages 677-693, November.
    16. Donghun Lee, 2022. "Knowledge Gradient: Capturing Value of Information in Iterative Decisions under Uncertainty," Mathematics, MDPI, vol. 10(23), pages 1-20, November.
    17. Dellino, G. & Lino, P. & Meloni, C. & Rizzo, A., 2009. "Kriging metamodel management in the design optimization of a CNG injection system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2345-2360.
    18. Martorell, S. & Villamizar, M. & Martón, I. & Villanueva, J.F. & Carlos, S. & Sánchez, A.I., 2014. "Evaluation of risk impact of changes to surveillance requirements addressing model and parameter uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 153-165.
    19. Mi, Jinhua & Lu, Ning & Li, Yan-Feng & Huang, Hong-Zhong & Bai, Libing, 2022. "An evidential network-based hierarchical method for system reliability analysis with common cause failures and mixed uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    20. J. Rohmer & S. Lecacheux & R. Pedreros & H. Quetelard & F. Bonnardot & D. Idier, 2016. "Dynamic parameter sensitivity in numerical modelling of cyclone-induced waves: a multi-look approach using advanced meta-modelling techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1765-1792, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:96:y:2011:i:9:p:1092-1113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.