IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v95y2010i6p698-703.html
   My bibliography  Save this article

Time series methods applied to failure prediction and detection

Author

Listed:
  • García, Fausto P.
  • Pedregal, Diego J.
  • Roberts, Clive

Abstract

Point mechanisms are critical track elements on railway networks. A failure in a single point mechanism causes delays, increased railway operating costs and even fatal accidents. This paper describes the development of a new robust and automatic algorithm for failure detection of point mechanisms. Failures are detected by comparing what can be considered the ‘expected’ form of signals predicted from historical records of point mechanism operation with those actually measured. The expected shape is a forecast from a combination of a VARMA (vector auto-regressive moving-average) model and a harmonic regression model. The algorithm has been tested on a large dataset taken from an in-service point mechanism at Abbotswood Junction in the UK. The results show that the faults can be predicted and detected.

Suggested Citation

  • García, Fausto P. & Pedregal, Diego J. & Roberts, Clive, 2010. "Time series methods applied to failure prediction and detection," Reliability Engineering and System Safety, Elsevier, vol. 95(6), pages 698-703.
  • Handle: RePEc:eee:reensy:v:95:y:2010:i:6:p:698-703
    DOI: 10.1016/j.ress.2009.10.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832010000451
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2009.10.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pedregal, Diego J. & Carmen Carnero, Ma, 2006. "State space models for condition monitoring: a case study," Reliability Engineering and System Safety, Elsevier, vol. 91(2), pages 171-180.
    2. Christer, A. H. & Wang, W. & Sharp, J. M., 1997. "A state space condition monitoring model for furnace erosion prediction and replacement," European Journal of Operational Research, Elsevier, vol. 101(1), pages 1-14, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abu-Samah, A. & Shahzad, M.K. & Zamai, E., 2017. "Bayesian based methodology for the extraction and validation of time bound failure signatures for online failure prediction," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 616-628.
    2. Tan, Tu Guang & Jang, Sunghyon & Yamaguchi, Akira, 2019. "A novel method for risk-informed decision-making under non-ideal Instrumentation and Control conditions through the application of Bayes’ Theorem," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 463-472.
    3. Márquez, Fausto Pedro García & Pérez, Jesús María Pinar & Marugán, Alberto Pliego & Papaelias, Mayorkinos, 2016. "Identification of critical components of wind turbines using FTA over the time," Renewable Energy, Elsevier, vol. 87(P2), pages 869-883.
    4. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    5. Bian, Chong & Yang, Shunkun & Huang, Tingting & Xu, Qingyang & Liu, Jie & Zio, Enrico, 2019. "Degradation state mining and identification for railway point machines," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 432-443.
    6. Pliego Marugán, Alberto & Peco Chacón, Ana María & García Márquez, Fausto Pedro, 2019. "Reliability analysis of detecting false alarms that employ neural networks: A real case study on wind turbines," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    7. Soares, Nielson & Aguiar, Eduardo Pestana de & Souza, Amanda Campos & Goliatt, Leonardo, 2021. "Unsupervised machine learning techniques to prevent faults in railroad switch machines," International Journal of Critical Infrastructure Protection, Elsevier, vol. 33(C).
    8. Carlos Quiterio Gómez Muñoz & Fausto Pedro García Márquez, 2016. "A New Fault Location Approach for Acoustic Emission Techniques in Wind Turbines," Energies, MDPI, vol. 9(1), pages 1-14, January.
    9. Fausto Pedro García Márquez & Alberto Pliego Marugán & Jesús María Pinar Pérez & Stuart Hillmansen & Mayorkinos Papaelias, 2017. "Optimal Dynamic Analysis of Electrical/Electronic Components in Wind Turbines," Energies, MDPI, vol. 10(8), pages 1-19, July.
    10. García Márquez, Fausto Pedro & Tobias, Andrew Mark & Pinar Pérez, Jesús María & Papaelias, Mayorkinos, 2012. "Condition monitoring of wind turbines: Techniques and methods," Renewable Energy, Elsevier, vol. 46(C), pages 169-178.
    11. Aisha Sa’ad & Aimé C. Nyoungue & Zied Hajej, 2021. "Improved Preventive Maintenance Scheduling for a Photovoltaic Plant under Environmental Constraints," Sustainability, MDPI, vol. 13(18), pages 1-22, September.
    12. Narender Singh & Dibakor Boruah & Jeroen D. M. De Kooning & Wim De Waele & Lieven Vandevelde, 2023. "Impact Assessment of Dynamic Loading Induced by the Provision of Frequency Containment Reserve on the Main Bearing Lifetime of a Wind Turbine," Energies, MDPI, vol. 16(6), pages 1-14, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ming-Yi You & Guang Meng, 2012. "A modularized framework for predictive maintenance scheduling," Journal of Risk and Reliability, , vol. 226(4), pages 380-391, August.
    2. Fausto Pedro García Márquez & Diego J. Pedregal & Clive Roberts, 2015. "New methods for the condition monitoring of level crossings," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(5), pages 878-884, April.
    3. Pedregal, Diego J. & Carmen Carnero, Ma., 2009. "Vibration analysis diagnostics by continuous-time models: A case study," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 244-253.
    4. Carnero, MaCarmen, 2006. "An evaluation system of the setting up of predictive maintenance programmes," Reliability Engineering and System Safety, Elsevier, vol. 91(8), pages 945-963.
    5. E. Skordilis & R. Moghaddass, 2017. "A condition monitoring approach for real-time monitoring of degrading systems using Kalman filter and logistic regression," International Journal of Production Research, Taylor & Francis Journals, vol. 55(19), pages 5579-5596, October.
    6. Zhengxin Zhang & Xiaosheng Si & Changhua Hu & Xiangyu Kong, 2015. "Degradation modeling–based remaining useful life estimation: A review on approaches for systems with heterogeneity," Journal of Risk and Reliability, , vol. 229(4), pages 343-355, August.
    7. Xu, Xin & Chen, Nan, 2017. "A state-space-based prognostics model for lithium-ion battery degradation," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 47-57.
    8. W Wang, 2011. "Overview of a semi-stochastic filtering approach for residual life estimation with applications in condition based maintenance," Journal of Risk and Reliability, , vol. 225(2), pages 185-197, June.
    9. Yawei Hu & Shujie Liu & Huitian Lu & Hongchao Zhang, 2018. "Online remaining useful life prognostics using an integrated particle filter," Journal of Risk and Reliability, , vol. 232(6), pages 587-597, December.
    10. Si, Xiao-Sheng & Chen, Mao-Yin & Wang, Wenbin & Hu, Chang-Hua & Zhou, Dong-Hua, 2013. "Specifying measurement errors for required lifetime estimation performance," European Journal of Operational Research, Elsevier, vol. 231(3), pages 631-644.
    11. de Jonge, Bram & Teunter, Ruud & Tinga, Tiedo, 2017. "The influence of practical factors on the benefits of condition-based maintenance over time-based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 21-30.
    12. Mitra Fouladirad & Antoine Grall, 2015. "Monitoring and condition-based maintenance with abrupt change in a system’s deterioration rate," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(12), pages 2183-2194, September.
    13. Daming Lin & Viliam Makis, 2006. "On‐line parameter estimation for a partially observable system subject to random failure," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(5), pages 477-483, August.
    14. Nguyen, Khanh T.P. & Medjaher, Kamal, 2019. "A new dynamic predictive maintenance framework using deep learning for failure prognostics," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 251-262.
    15. Makis, Viliam & Wu, Jianmou & Gao, Yan, 2006. "An application of DPCA to oil data for CBM modeling," European Journal of Operational Research, Elsevier, vol. 174(1), pages 112-123, October.
    16. Diego Pedregal & Fausto García & Clive Roberts, 2009. "An algorithmic approach for maintenance management based on advanced state space systems and harmonic regressions," Annals of Operations Research, Springer, vol. 166(1), pages 109-124, February.
    17. García Márquez, Fausto Pedro & Schmid, Felix, 2007. "A digital filter-based approach to the remote condition monitoring of railway turnouts," Reliability Engineering and System Safety, Elsevier, vol. 92(6), pages 830-840.
    18. Rui Jiang & Michael Kim & Viliam Makis, 2012. "A Bayesian model and numerical algorithm for CBM availability maximization," Annals of Operations Research, Springer, vol. 196(1), pages 333-348, July.
    19. Nishit Kumar Srivastava & Sandeep Mondal, 2016. "Development of Predictive Maintenance Model for N-Component Repairable System Using NHPP Models and System Availability Concept," Global Business Review, International Management Institute, vol. 17(1), pages 105-115, February.
    20. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:95:y:2010:i:6:p:698-703. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.