IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v94y2009i8p1245-1250.html
   My bibliography  Save this article

An accurate approximate solution of optimal sequential age replacement policy for a finite-time horizon

Author

Listed:
  • Jiang, R.

Abstract

It is difficult to find the optimal solution of the sequential age replacement policy for a finite-time horizon. This paper presents an accurate approximation to find an approximate optimal solution of the sequential replacement policy. The proposed approximation is computationally simple and suitable for any failure distribution. Their accuracy is illustrated by two examples. Based on the approximate solution, an approximate estimate for the total cost is derived.

Suggested Citation

  • Jiang, R., 2009. "An accurate approximate solution of optimal sequential age replacement policy for a finite-time horizon," Reliability Engineering and System Safety, Elsevier, vol. 94(8), pages 1245-1250.
  • Handle: RePEc:eee:reensy:v:94:y:2009:i:8:p:1245-1250
    DOI: 10.1016/j.ress.2009.01.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832009000209
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2009.01.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiang, R., 2008. "A Gamma–normal series truncation approximation for computing the Weibull renewal function," Reliability Engineering and System Safety, Elsevier, vol. 93(4), pages 616-626.
    2. Nakagawa, T. & Mizutani, S., 2009. "A summary of maintenance policies for a finite interval," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 89-96.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. de Jonge, Bram & Dijkstra, Arjan S. & Romeijnders, Ward, 2015. "Cost benefits of postponing time-based maintenance under lifetime distribution uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 15-21.
    2. Zhao, Xufeng & Al-Khalifa, Khalifa N. & Nakagawa, Toshio, 2015. "Approximate methods for optimal replacement, maintenance, and inspection policies," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 68-73.
    3. Dursun, İpek & Akçay, Alp & van Houtum, Geert-Jan, 2022. "Age-based maintenance under population heterogeneity: Optimal exploration and exploitation," European Journal of Operational Research, Elsevier, vol. 301(3), pages 1007-1020.
    4. Cheng, Tianjin & Pandey, Mahesh D. & van der Weide, J.A.M., 2012. "The probability distribution of maintenance cost of a system affected by the gamma process of degradation: Finite time solution," Reliability Engineering and System Safety, Elsevier, vol. 108(C), pages 65-76.
    5. A Ponchet & M Fouladirad & A Grall, 2011. "Maintenance policy on a finite time span for a gradually deteriorating system with imperfect improvements," Journal of Risk and Reliability, , vol. 225(2), pages 105-116, June.
    6. Zhao, Xufeng & Al-Khalifa, Khalifa N. & Magid Hamouda, Abdel & Nakagawa, Toshio, 2017. "Age replacement models: A summary with new perspectives and methods," Reliability Engineering and System Safety, Elsevier, vol. 161(C), pages 95-105.
    7. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    8. Charles Wells, 2015. "Bounds on uptime distribution based on aging for systems with finite lifetimes," Annals of Operations Research, Springer, vol. 235(1), pages 757-769, December.
    9. Jiang, R., 2018. "Performance evaluation of seven optimization models of age replacement policy," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 302-311.
    10. Jiang, R., 2010. "A simple approximation for the renewal function with an increasing failure rate," Reliability Engineering and System Safety, Elsevier, vol. 95(9), pages 963-969.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Berrade, M.D. & Cavalcante, C.A.V. & Scarf, P.A., 2013. "Modelling imperfect inspection over a finite horizon," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 18-29.
    2. Ben Mabrouk, A. & Chelbi, A. & Radhoui, M., 2016. "Optimal imperfect maintenance strategy for leased equipment," International Journal of Production Economics, Elsevier, vol. 178(C), pages 57-64.
    3. Brezavšček Alenka, 2013. "A Simple Discrete Approximation for the Renewal Function," Business Systems Research, Sciendo, vol. 4(1), pages 65-75, March.
    4. Yang, Li & Ma, Xiaobing & Peng, Rui & Zhai, Qingqing & Zhao, Yu, 2017. "A preventive maintenance policy based on dependent two-stage deterioration and external shocks," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 201-211.
    5. M D Pandey & T Cheng & J A M van der Weide, 2011. "Finite-time maintenance cost analysis of engineering systems affected by stochastic degradation," Journal of Risk and Reliability, , vol. 225(2), pages 241-250, June.
    6. Jiawen Hu & Zuhua Jiang & Hong Wang, 2016. "Preventive maintenance for a single-machine system under variable operational conditions," Journal of Risk and Reliability, , vol. 230(4), pages 391-404, August.
    7. Young Yun, Won & Nakagawa, Toshio, 2010. "Replacement and inspection policies for products with random life cycle," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 161-165.
    8. Wenke Gao, 2020. "An extended geometric process and its application in replacement policy," Journal of Risk and Reliability, , vol. 234(1), pages 88-103, February.
    9. A Ponchet & M Fouladirad & A Grall, 2011. "Maintenance policy on a finite time span for a gradually deteriorating system with imperfect improvements," Journal of Risk and Reliability, , vol. 225(2), pages 105-116, June.
    10. Zhang, Wenyu & Zhang, Xiaohong & He, Shuguang & Zhao, Xing & He, Zhen, 2024. "Optimal condition-based maintenance policy for multi-component repairable systems with economic dependence in a finite-horizon," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    11. de Jonge, Bram & Dijkstra, Arjan S. & Romeijnders, Ward, 2015. "Cost benefits of postponing time-based maintenance under lifetime distribution uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 15-21.
    12. Jiang, R., 2020. "A novel two-fold sectional approximation of renewal function and its applications," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    13. Jiawen Hu & Zuhua Jiang & Haitao Liao, 2017. "Preventive maintenance of a batch production system under time-varying operational condition," International Journal of Production Research, Taylor & Francis Journals, vol. 55(19), pages 5681-5705, October.
    14. Berrade, M.D. & Scarf, P.A. & Cavalcante, C.A.V., 2017. "A study of postponed replacement in a delay time model," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 70-79.
    15. Sidibé, I.B. & Khatab, A. & Diallo, C. & Adjallah, K.H., 2016. "Kernel estimator of maintenance optimization model for a stochastically degrading system under different operating environments," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 109-116.
    16. Wen Liang Chang, 2015. "Optimal single-replacement for repairable products with different failure rate under a finite planning horizon," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(6), pages 1003-1009, April.
    17. Chaabane, K. & Khatab, A. & Diallo, C. & Aghezzaf, E.-H. & Venkatadri, U., 2020. "Integrated imperfect multimission selective maintenance and repairpersons assignment problem," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    18. Cheng, Tianjin & Pandey, Mahesh D. & van der Weide, J.A.M., 2012. "The probability distribution of maintenance cost of a system affected by the gamma process of degradation: Finite time solution," Reliability Engineering and System Safety, Elsevier, vol. 108(C), pages 65-76.
    19. Sou-Sen Leu & Tao-Ming Ying, 2020. "Replacement and Maintenance Decision Analysis for Hydraulic Machinery Facilities at Reservoirs under Imperfect Maintenance," Energies, MDPI, vol. 13(10), pages 1-10, May.
    20. Yang, Li & Ma, Xiaobing & Zhai, Qingqing & Zhao, Yu, 2016. "A delay time model for a mission-based system subject to periodic and random inspection and postponed replacement," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 96-104.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:94:y:2009:i:8:p:1245-1250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.