IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v161y2017icp95-105.html
   My bibliography  Save this article

Age replacement models: A summary with new perspectives and methods

Author

Listed:
  • Zhao, Xufeng
  • Al-Khalifa, Khalifa N.
  • Magid Hamouda, Abdel
  • Nakagawa, Toshio

Abstract

Age replacement models are fundamental to maintenance theory. This paper summarizes our new perspectives and hods in age replacement models: First, we optimize the expected cost rate for a required availability level and vice versa. Second, an asymptotic model with simple calculation is proposed by using the cumulative hazard function skillfully. Third, we challenge the established theory such that preventive replacement should be non-random and only corrective replacement should be made for the unit with exponential failure. Fourth, three replacement policies with random working cycles are discussed, which are called overtime replacement, replacement first, and replacement last, respectively. Fifth, the policies of replacement first and last are formulated with general models. Sixth, age replacement is modified for the situation when the economical life cycle of the unit is a random variable with probability distribution. Finally, models of a parallel system with constant and random number of units are taken into considerations. The models of expected cost rates are obtained and optimal replacement times to minimize them are discussed analytically and computed numerically. Further studies and potential applications are also indicated at the end of discussions of the above models.

Suggested Citation

  • Zhao, Xufeng & Al-Khalifa, Khalifa N. & Magid Hamouda, Abdel & Nakagawa, Toshio, 2017. "Age replacement models: A summary with new perspectives and methods," Reliability Engineering and System Safety, Elsevier, vol. 161(C), pages 95-105.
  • Handle: RePEc:eee:reensy:v:161:y:2017:i:c:p:95-105
    DOI: 10.1016/j.ress.2017.01.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832017300601
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2017.01.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Toshio Nakagawa, 2014. "Random Maintenance Policies," Springer Series in Reliability Engineering, Springer, edition 127, number 978-1-4471-6575-0, January.
    2. Xufeng Zhao & Toshio Nakagawa, 2015. "Optimal periodic and random inspections with first, last and overtime policies," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(9), pages 1648-1660, July.
    3. Coolen-Schrijner, P. & Coolen, F.P.A., 2007. "Nonparametric adaptive age replacement with a one-cycle criterion," Reliability Engineering and System Safety, Elsevier, vol. 92(1), pages 74-84.
    4. Sheu, Shey-Huei & Chang, Chin-Chih & Zhang, Zhe George & Chien, Yu-Hung, 2012. "A note on replacement policy for a system subject to non-homogeneous pure birth shocks," European Journal of Operational Research, Elsevier, vol. 216(2), pages 503-508.
    5. Zhao, Xufeng & Chen, Mingchih & Nakagawa, Toshio, 2016. "Replacement policies for a parallel system with shortage and excess costs," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 89-95.
    6. Lapa, Celso Marcelo F. & Pereira, Cláudio Márcio N.A. & de Barros, Márcio Paes, 2006. "A model for preventive maintenance planning by genetic algorithms based in cost and reliability," Reliability Engineering and System Safety, Elsevier, vol. 91(2), pages 233-240.
    7. Jiang, R., 2009. "An accurate approximate solution of optimal sequential age replacement policy for a finite-time horizon," Reliability Engineering and System Safety, Elsevier, vol. 94(8), pages 1245-1250.
    8. Toshio Nakagawa, 2008. "Advanced Reliability Models and Maintenance Policies," Springer Series in Reliability Engineering, Springer, number 978-1-84800-294-4, January.
    9. Lim, J.H. & Qu, Jian & Zuo, Ming J., 2016. "Age replacement policy based on imperfect repair with random probability," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 24-33.
    10. Hamidi, Maryam & Szidarovszky, Ferenc & Szidarovszky, Miklos, 2016. "New one cycle criteria for optimizing preventive replacement policies," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 42-48.
    11. Nakagawa, T. & Mizutani, S., 2009. "A summary of maintenance policies for a finite interval," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 89-96.
    12. Zhao, Xufeng & Al-Khalifa, Khalifa N. & Nakagawa, Toshio, 2015. "Approximate methods for optimal replacement, maintenance, and inspection policies," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 68-73.
    13. Zhao, Xufeng & Nakagawa, Toshio, 2012. "Optimization problems of replacement first or last in reliability theory," European Journal of Operational Research, Elsevier, vol. 223(1), pages 141-149.
    14. Shafiee, Mahmood & Finkelstein, Maxim, 2015. "An optimal age-based group maintenance policy for multi-unit degrading systems," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 230-238.
    15. Toshio Nakagawa, 2005. "Maintenance Theory of Reliability," Springer Series in Reliability Engineering, Springer, number 978-1-84628-221-8, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xufeng Zhao & Mingchih Chen & Toshio Nakagawa, 2022. "Periodic replacement policies with shortage and excess costs," Annals of Operations Research, Springer, vol. 311(1), pages 469-487, April.
    2. Mingchih Chen & Xufeng Zhao & Toshio Nakagawa, 2019. "Replacement policies with general models," Annals of Operations Research, Springer, vol. 277(1), pages 47-61, June.
    3. Zhao, Xufeng & Chen, Mingchih & Nakagawa, Toshio, 2016. "Replacement policies for a parallel system with shortage and excess costs," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 89-95.
    4. Zheng, Junjun & Okamura, Hiroyuki & Dohi, Tadashi, 2021. "Age replacement with Markovian opportunity process," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    5. Zhao, Xufeng & Qian, Cunhua & Nakagawa, Toshio, 2013. "Optimal policies for cumulative damage models with maintenance last and first," Reliability Engineering and System Safety, Elsevier, vol. 110(C), pages 50-59.
    6. Hamidi, Maryam & Szidarovszky, Ferenc & Szidarovszky, Miklos, 2016. "New one cycle criteria for optimizing preventive replacement policies," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 42-48.
    7. Sheu, Shey-Huei & Tsai, Hsin-Nan & Sheu, Uan-Yu & Zhang, Zhe George, 2019. "Optimal replacement policies for a system based on a one-cycle criterion," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    8. Xufeng Zhao & Satoshi Mizutani & Mingchih Chen & Toshio Nakagawa, 2022. "Preventive replacement policies for parallel systems with deviation costs between replacement and failure," Annals of Operations Research, Springer, vol. 312(1), pages 533-551, May.
    9. Mizutani, Satoshi & Zhao, Xufeng & Nakagawa, Toshio, 2021. "Age and periodic replacement policies with two failure modes in general replacement models," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    10. Sheu, Shey-Huei & Liu, Tzu-Hsin & Zhang, Zhe-George & Tsai, Hsin-Nan, 2018. "The generalized age maintenance policies with random working times," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 503-514.
    11. Sheu, Shey-Huei & Liu, Tzu-Hsin & Zhang, Zhe-George, 2019. "Extended optimal preventive replacement policies with random working cycle," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 398-415.
    12. de Jonge, Bram & Dijkstra, Arjan S. & Romeijnders, Ward, 2015. "Cost benefits of postponing time-based maintenance under lifetime distribution uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 15-21.
    13. Maxim Finkelstein & Mahmood Shafiee, 2017. "Preventive maintenance for systems with repairable minor failures," Journal of Risk and Reliability, , vol. 231(2), pages 101-108, April.
    14. Zhao, Xufeng & Liu, Hu-Chen & Nakagawa, Toshio, 2015. "Where does “whichever occurs first†hold for preventive maintenance modelings?," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 203-211.
    15. Wu, Jing & Qian, Cunhua & Dohi, Tadashi, 2024. "Optimal opportunity-based age replacement policies in discrete time," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    16. Junyuan Wang & Jimin Ye, 2022. "A new repair model and its optimization for cold standby system," Operational Research, Springer, vol. 22(1), pages 105-122, March.
    17. Taghipour, Sharareh & Banjevic, Dragan & Jardine, Andrew K.S., 2010. "Periodic inspection optimization model for a complex repairable system," Reliability Engineering and System Safety, Elsevier, vol. 95(9), pages 944-952.
    18. Zhao, Xufeng & Nakagawa, Toshio, 2012. "Optimization problems of replacement first or last in reliability theory," European Journal of Operational Research, Elsevier, vol. 223(1), pages 141-149.
    19. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    20. Nakagawa, T. & Mizutani, S. & Chen, M., 2010. "A summary of periodic and random inspection policies," Reliability Engineering and System Safety, Elsevier, vol. 95(8), pages 906-911.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:161:y:2017:i:c:p:95-105. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.