IDEAS home Printed from https://ideas.repec.org/a/taf/tsysxx/v46y2015i6p1003-1009.html
   My bibliography  Save this article

Optimal single-replacement for repairable products with different failure rate under a finite planning horizon

Author

Listed:
  • Wen Liang Chang

Abstract

This paper provides a replacement policy for repairable products with free-repair warranty (FRW) under a finite planning horizon from the consumer's viewpoint. Assume that the product is replaced once within a finite planning horizon, and the failure rate of the second product is lower than the failure rate of the first product. Within FRW, the failed product is corrected by minimal repair without any cost to the consumers. After FRW, the failed product is repaired with a fixed repair cost to the consumers. However, each failure incurs a fixed downtime cost to the consumers over a finite planning horizon. In this paper, we derive the three models of the expected total disbursement cost within a finite planning horizon and some properties of the optimal replacement policy under some reasonable conditions are obtained. Finally, numerical examples are given to illustrate the features of the optimal replacement policy under various maintenance costs.

Suggested Citation

  • Wen Liang Chang, 2015. "Optimal single-replacement for repairable products with different failure rate under a finite planning horizon," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(6), pages 1003-1009, April.
  • Handle: RePEc:taf:tsysxx:v:46:y:2015:i:6:p:1003-1009
    DOI: 10.1080/00207721.2013.807381
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00207721.2013.807381
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00207721.2013.807381?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Chih-Hsiung & Sheu, Shey-Heui, 2003. "Optimal lot sizing for products sold under free-repair warranty," European Journal of Operational Research, Elsevier, vol. 149(1), pages 131-141, August.
    2. Chien, Yu-Hung, 2010. "Optimal age for preventive replacement under a combined fully renewable free replacement with a pro-rata warranty," International Journal of Production Economics, Elsevier, vol. 124(1), pages 198-205, March.
    3. Nakagawa, Toshio & Kowada, Masashi, 1983. "Analysis of a system with minimal repair and its application to replacement policy," European Journal of Operational Research, Elsevier, vol. 12(2), pages 176-182, February.
    4. Jaturonnatee, J. & Murthy, D.N.P. & Boondiskulchok, R., 2006. "Optimal preventive maintenance of leased equipment with corrective minimal repairs," European Journal of Operational Research, Elsevier, vol. 174(1), pages 201-215, October.
    5. Nakagawa, T. & Mizutani, S., 2009. "A summary of maintenance policies for a finite interval," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 89-96.
    6. Yeh, Ruey Huei & Lo, Hui-Chiung, 2001. "Optimal preventive-maintenance warranty policy for repairable products," European Journal of Operational Research, Elsevier, vol. 134(1), pages 59-69, October.
    7. Philip J. Boland & Frank Proschan, 1982. "Periodic Replacement with Increasing Minimal Repair Costs at Failure," Operations Research, INFORMS, vol. 30(6), pages 1183-1189, December.
    8. A.N. Das & S.P. Sarmah, 2010. "Preventive replacement models: an overview and their application in process industries," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 4(3), pages 280-307.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xian Zhao & Xinqian Huang & Jinglei Sun, 2020. "Reliability modeling and maintenance optimization for the two-unit system with preset self-repairing mechanism," Journal of Risk and Reliability, , vol. 234(2), pages 221-234, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruey Yeh & Cheng-Kang Chen, 2006. "Periodical Preventive-Maintenance Contract for a Leased Facility with Weibull Life-Time," Quality & Quantity: International Journal of Methodology, Springer, vol. 40(2), pages 303-313, April.
    2. Shafiee, Mahmood & Chukova, Stefanka, 2013. "Maintenance models in warranty: A literature review," European Journal of Operational Research, Elsevier, vol. 229(3), pages 561-572.
    3. Ben Mabrouk, A. & Chelbi, A. & Radhoui, M., 2016. "Optimal imperfect maintenance strategy for leased equipment," International Journal of Production Economics, Elsevier, vol. 178(C), pages 57-64.
    4. Sheu, Shey-Huei, 1998. "A generalized age and block replacement of a system subject to shocks," European Journal of Operational Research, Elsevier, vol. 108(2), pages 345-362, July.
    5. Ruey Yeh & Wen Chang & Hui-Chiung Lo, 2010. "Optimal threshold values of age and two-phase maintenance policy for leased equipments using age reduction method," Annals of Operations Research, Springer, vol. 181(1), pages 171-183, December.
    6. Shey-Huei Sheu & Tzu-Hsin Liu & Zhe-George Zhang & Hsin-Nan Tsai & Jung-Chih Chen, 2016. "Optimal two-threshold replacement policy in a cumulative damage model," Annals of Operations Research, Springer, vol. 244(1), pages 23-47, September.
    7. Ciriaco Valdez‐Flores & Richard M. Feldman, 1989. "A survey of preventive maintenance models for stochastically deteriorating single‐unit systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 36(4), pages 419-446, August.
    8. Sheu, Shey-Huei, 1999. "Extended optimal replacement model for deteriorating systems," European Journal of Operational Research, Elsevier, vol. 112(3), pages 503-516, February.
    9. Young Yun, Won & Nakagawa, Toshio, 2010. "Replacement and inspection policies for products with random life cycle," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 161-165.
    10. Guan Jun Wang & Yuan Lin Zhang, 2016. "Optimal replacement policy for a two-dissimilar-component cold standby system with different repair actions," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(5), pages 1021-1031, April.
    11. de Jonge, Bram & Dijkstra, Arjan S. & Romeijnders, Ward, 2015. "Cost benefits of postponing time-based maintenance under lifetime distribution uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 15-21.
    12. J-A Chen & Y-H Chien, 2007. "Optimal age-replacement policy for renewing warranted products," Journal of Risk and Reliability, , vol. 221(4), pages 229-237, December.
    13. Shey-Huei Sheu & Chin-Chih Chang & Yu-Hung Chien, 2011. "Optimal age-replacement time with minimal repair based on cumulative repair-cost limit for a system subject to shocks," Annals of Operations Research, Springer, vol. 186(1), pages 317-329, June.
    14. Sheu, Shey-Huei & Chien, Yu-Hung, 2004. "Optimal age-replacement policy of a system subject to shocks with random lead-time," European Journal of Operational Research, Elsevier, vol. 159(1), pages 132-144, November.
    15. Shey-Huei Sheu & Griffith, William S. & Toshio Nakagawa, 1995. "Extended optimal replacement model with random minimal repair costs," European Journal of Operational Research, Elsevier, vol. 85(3), pages 636-649, September.
    16. Yu-Hung Chien & Chin-Chih Chang & Shey-Huei Sheu, 2010. "Optimal age-replacement model with age-dependent type of failure and random lead time based on a cumulative repair-cost limit policy," Annals of Operations Research, Springer, vol. 181(1), pages 723-744, December.
    17. Wu, Jun & Xie, Min & Adam Ng, Tsan Sheng, 2011. "On a general periodic preventive maintenance policy incorporating warranty contracts and system ageing losses," International Journal of Production Economics, Elsevier, vol. 129(1), pages 102-110, January.
    18. Sheu, Shey-Huei & Jhang, Jhy-Ping, 1997. "A generalized group maintenance policy," European Journal of Operational Research, Elsevier, vol. 96(2), pages 232-247, January.
    19. Mamabolo R. M. & Beichelt F. E., 2004. "Maintenance Policies with Minimal Repair," Stochastics and Quality Control, De Gruyter, vol. 19(2), pages 143-166, January.
    20. Coria, V.H. & Maximov, S. & Rivas-Dávalos, F. & Melchor, C.L. & Guardado, J.L., 2015. "Analytical method for optimization of maintenance policy based on available system failure data," Reliability Engineering and System Safety, Elsevier, vol. 135(C), pages 55-63.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:tsysxx:v:46:y:2015:i:6:p:1003-1009. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TSYS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.