IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v92y2007i3p369-377.html
   My bibliography  Save this article

Formal safety assessment based on relative risks model in ship navigation

Author

Listed:
  • Hu, Shenping
  • Fang, Quangen
  • Xia, Haibo
  • Xi, Yongtao

Abstract

Formal safety assessment (FSA) is a structured and systematic methodology aiming at enhancing maritime safety. It has been gradually and broadly used in the shipping industry nowadays around the world. On the basis of analysis and conclusion of FSA approach, this paper discusses quantitative risk assessment and generic risk model in FSA, especially frequency and severity criteria in ship navigation. Then it puts forward a new model based on relative risk assessment (MRRA). The model presents a risk-assessment approach based on fuzzy functions and takes five factors into account, including detailed information about accident characteristics. It has already been used for the assessment of pilotage safety in Shanghai harbor, China. Consequently, it can be proved that MRRA is a useful method to solve the problems in the risk assessment of ship navigation safety in practice.

Suggested Citation

  • Hu, Shenping & Fang, Quangen & Xia, Haibo & Xi, Yongtao, 2007. "Formal safety assessment based on relative risks model in ship navigation," Reliability Engineering and System Safety, Elsevier, vol. 92(3), pages 369-377.
  • Handle: RePEc:eee:reensy:v:92:y:2007:i:3:p:369-377
    DOI: 10.1016/j.ress.2006.04.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832006001037
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2006.04.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arends, B.J. & Jonkman, S.N. & Vrijling, J.K. & van Gelder, P.H.A.J.M, 2005. "Evaluation of tunnel safety: towards an economic safety optimum," Reliability Engineering and System Safety, Elsevier, vol. 90(2), pages 217-228.
    2. Podofillini, Luca & Zio, Enrico & Vatn, Jørn, 2006. "Risk-informed optimisation of railway tracks inspection and maintenance procedures," Reliability Engineering and System Safety, Elsevier, vol. 91(1), pages 20-35.
    3. Vaurio, Jussi K. & Jänkälä, Kalle E., 2006. "Evaluation and comparison of estimation methods for failure rates and probabilities," Reliability Engineering and System Safety, Elsevier, vol. 91(2), pages 209-221.
    4. Proske, Dirk & Curbach, Manfred, 2005. "Risk to historical bridges due to ship impact on German inland waterways," Reliability Engineering and System Safety, Elsevier, vol. 90(2), pages 261-270.
    5. Delvosalle, C. & Fiévez, C. & Pipart, A. & Fabrega, J. Casal & Planas, E. & Christou, M. & Mushtaq, F., 2005. "Identification of reference accident scenarios in SEVESO establishments," Reliability Engineering and System Safety, Elsevier, vol. 90(2), pages 238-246.
    6. Aven, Terje & Vinnem, Jan Erik, 2005. "On the use of risk acceptance criteria in the offshore oil and gas industry," Reliability Engineering and System Safety, Elsevier, vol. 90(1), pages 15-24.
    7. Ale, Ben J.M., 2005. "Living with risk: a management question," Reliability Engineering and System Safety, Elsevier, vol. 90(2), pages 196-205.
    8. Hokstad, Per & Steiro, Trygve, 2006. "Overall strategy for risk evaluation and priority setting of risk regulations," Reliability Engineering and System Safety, Elsevier, vol. 91(1), pages 100-111.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Kyungmee O. & Yang, Yoonjung & Zuo, Ming J., 2013. "A new reliability allocation weight for reducing the occurrence of severe failure effects," Reliability Engineering and System Safety, Elsevier, vol. 117(C), pages 81-88.
    2. Molin Sun & Zhongyi Zheng & Longhui Gang, 2018. "Uncertainty Analysis of the Estimated Risk in Formal Safety Assessment," Sustainability, MDPI, vol. 10(2), pages 1-16, January.
    3. Atiq W. Siddiqui & Manish Verma, 2018. "Assessing risk in the intercontinental transportation of crude oil," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 20(2), pages 280-299, June.
    4. Muhammad Ilyas & Zhihong Jin & Irfan Ullah & Abbas Agha Jafri, 2023. "Investigation of Risk Factors Influencing the Safety of Maritime Containers Supply Chain: In the Period of the Pandemic," Sustainability, MDPI, vol. 15(11), pages 1-18, May.
    5. Szlapczynski, Rafal & Szlapczynska, Joanna, 2021. "A ship domain-based model of collision risk for near-miss detection and Collision Alert Systems," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    6. Goerlandt, Floris & Montewka, Jakub, 2015. "Maritime transportation risk analysis: Review and analysis in light of some foundational issues," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 115-134.
    7. Feng, Zhichao & Zhou, Zhijie & Hu, Changhua & Ban, Xiaojun & Hu, Guanyu, 2020. "A safety assessment model based on belief rule base with new optimization method," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    8. Gino J. Lim & Jaeyoung Cho & Selim Bora & Taofeek Biobaku & Hamid Parsaei, 2018. "Models and computational algorithms for maritime risk analysis: a review," Annals of Operations Research, Springer, vol. 271(2), pages 765-786, December.
    9. Vanem, Erik & Antão, Pedro & Østvik, Ivan & de Comas, Francisco Del Castillo, 2008. "Analysing the risk of LNG carrier operations," Reliability Engineering and System Safety, Elsevier, vol. 93(9), pages 1328-1344.
    10. Atiq Siddiqui & Manish Verma, 2013. "An Expected Consequence Approach to Route Choice in the Maritime Transportation of Crude Oil," Risk Analysis, John Wiley & Sons, vol. 33(11), pages 2041-2055, November.
    11. Chikha, Paulina & Skorupski, Jacek, 2022. "The risk of an airport traffic accident in the context of the ground handling personnel performance," Journal of Air Transport Management, Elsevier, vol. 105(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vinnem, Jan Erik, 2010. "Risk analysis and risk acceptance criteria in the planning processes of hazardous facilities—A case of an LNG plant in an urban area," Reliability Engineering and System Safety, Elsevier, vol. 95(6), pages 662-670.
    2. Kasai, Naoya & Matsuhashi, Shigemi & Sekine, Kazuyoshi, 2013. "Accident occurrence model for the risk analysis of industrialfacilities," Reliability Engineering and System Safety, Elsevier, vol. 114(C), pages 71-74.
    3. Macchi, Marco & Garetti, Marco & Centrone, Domenico & Fumagalli, Luca & Piero Pavirani, Gian, 2012. "Maintenance management of railway infrastructures based on reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 104(C), pages 71-83.
    4. Moura Carneiro, F.O. & Barbosa Rocha, H.H. & Costa Rocha, P.A., 2013. "Investigation of possible societal risk associated with wind power generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 30-36.
    5. Yang, Li & Ma, Xiaobing & Peng, Rui & Zhai, Qingqing & Zhao, Yu, 2017. "A preventive maintenance policy based on dependent two-stage deterioration and external shocks," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 201-211.
    6. Terje Aven, 2012. "Foundational Issues in Risk Assessment and Risk Management," Risk Analysis, John Wiley & Sons, vol. 32(10), pages 1647-1656, October.
    7. E Zio & M Librizzi & G Sansavini, 2008. "A combined Monte Carlo and cellular automata approach to the unreliability analysis of binary network systems," Journal of Risk and Reliability, , vol. 222(1), pages 31-38, March.
    8. Odolinski, Kristofer, 2019. "The impact of cumulative tonnes on track failures: An empirical approach," Papers 2019:1, Research Programme in Transport Economics.
    9. Babaleye, Ahmed O. & Kurt, Rafet Emek & Khan, Faisal, 2019. "Safety analysis of plugging and abandonment of oil and gas wells in uncertain conditions with limited data," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 133-141.
    10. Nam, Kiil & Chang, Daejun & Chang, Kwangpil & Rhee, Taejin & Lee, In-Beum, 2011. "Methodology of life cycle cost with risk expenditure for offshore process at conceptual design stage," Energy, Elsevier, vol. 36(3), pages 1554-1563.
    11. Tim Bedford, 2013. "Decision Making for Group Risk Reduction: Dealing with Epistemic Uncertainty," Risk Analysis, John Wiley & Sons, vol. 33(10), pages 1884-1898, October.
    12. Aven, Terje, 2013. "Practical implications of the new risk perspectives," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 136-145.
    13. Feng Guo & Yanan Wang & Jie Peng & Hetian Huang & Xiangting Tu & Hu Zhao & Nan Zhan & Zhu Rao & Gaofeng Zhao & Hongbo Yang, 2022. "Occurrence, Distribution, and Risk Assessment of Antibiotics in the Aquatic Environment of the Karst Plateau Wetland of Yangtze River Basin, Southwestern China," IJERPH, MDPI, vol. 19(12), pages 1-14, June.
    14. Tang, Yang & Liu, Qingyou & Jing, Jiajia & Yang, Yan & Zou, Zhengwei, 2017. "A framework for identification of maintenance significant items in reliability centered maintenance," Energy, Elsevier, vol. 118(C), pages 1295-1303.
    15. J. E. Vinnem & T Aven, 2006. "Case illustration of a decision framework for health, environment, and safety management," Journal of Risk and Reliability, , vol. 220(2), pages 115-121, December.
    16. Saleh, Ali & Remenyte-Prescott, Rasa & Prescott, Darren & Chiachío, Manuel, 2024. "Intelligent and adaptive asset management model for railway sections using the iPN method," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    17. Nilsson, Jan-Eric & Odolinski, Kristofer, 2020. "When should infrastructure assets be renewed?: the economic impact of cumulative tonnes on railway infrastructure," Papers 2020:4, Research Programme in Transport Economics.
    18. Wang, Wenbin, 2012. "An overview of the recent advances in delay-time-based maintenance modelling," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 165-178.
    19. Abrahamsen, E.B. & Aven, T., 2008. "On the consistency of risk acceptance criteria with normative theories for decision-making," Reliability Engineering and System Safety, Elsevier, vol. 93(12), pages 1906-1910.
    20. Darren Prescott & John Andrews, 2013. "A track ballast maintenance and inspection model for a rail network," Journal of Risk and Reliability, , vol. 227(3), pages 251-266, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:92:y:2007:i:3:p:369-377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.