IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v221y2022ics0951832022000552.html
   My bibliography  Save this article

Resilience-driven repair sequencing decision under uncertainty for critical infrastructure systems

Author

Listed:
  • Xu, Min
  • Ouyang, Min
  • Hong, Liu
  • Mao, Zijun
  • Xu, Xiaolin

Abstract

Disruptions on critical infrastructure systems (CISs) might affect their normal operation and cause severe social and economic impact. The rapid recovery of post-disaster CISs is crucially important. Based on the authors’ previous work on the deterministic formulation of the repair sequencing decision problem of post-disaster CISs under limited repair resources, this paper considers the uncertainty of the repair time of damaged components and proposes a two-stage stochastic model. To solve the stochastic model, a scenario generation and reduction method is first used to generate a limited number of repair time scenarios, and then an efficient enumeration algorithm is proposed for small-scale disruptions and adopted as a module in a heuristic algorithm for large-scale disruptions. Numerical experiments on three systems are conducted to demonstrate the efficiency of the proposed algorithm. Results show that the proposed algorithm can be applied to the recovery decision of large-scale CISs with extensive disruptions. In addition, results show that for most instances, the stochastic solution solved using a limited number of repair time scenarios might be worse than the solution solved from the deterministic model when judging the two solutions by a huge number of repair time scenarios to sufficiently capture the repair time uncertainty.

Suggested Citation

  • Xu, Min & Ouyang, Min & Hong, Liu & Mao, Zijun & Xu, Xiaolin, 2022. "Resilience-driven repair sequencing decision under uncertainty for critical infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
  • Handle: RePEc:eee:reensy:v:221:y:2022:i:c:s0951832022000552
    DOI: 10.1016/j.ress.2022.108378
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022000552
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108378?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ouyang, Min & Wang, Zhenghua, 2015. "Resilience assessment of interdependent infrastructure systems: With a focus on joint restoration modeling and analysis," Reliability Engineering and System Safety, Elsevier, vol. 141(C), pages 74-82.
    2. Morshedlou, Nazanin & González, Andrés D. & Barker, Kash, 2018. "Work crew routing problem for infrastructure network restoration," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 66-89.
    3. Kasaei, Maziar & Salman, F. Sibel, 2016. "Arc routing problems to restore connectivity of a road network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 177-206.
    4. Sharkey, Thomas C. & Cavdaroglu, Burak & Nguyen, Huy & Holman, Jonathan & Mitchell, John E. & Wallace, William A., 2015. "Interdependent network restoration: On the value of information-sharing," European Journal of Operational Research, Elsevier, vol. 244(1), pages 309-321.
    5. Li, Yulong & Zhang, Chi & Jia, Chuanzhou & Li, Xiaodong & Zhu, Yimin, 2019. "Joint optimization of workforce scheduling and routing for restoring a disrupted critical infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    6. Liu, Wei & Song, Zhaoyang & Ouyang, Min & Li, Jie, 2020. "Recovery-based seismic resilience enhancement strategies of water distribution networks," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    7. Ouyang, Min & Liu, Chuang & Xu, Min, 2019. "Value of resilience-based solutions on critical infrastructure protection: Comparing with robustness-based solutions," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    8. Akbari, Vahid & Salman, F. Sibel, 2017. "Multi-vehicle synchronized arc routing problem to restore post-disaster network connectivity," European Journal of Operational Research, Elsevier, vol. 257(2), pages 625-640.
    9. Nurre, Sarah G. & Cavdaroglu, Burak & Mitchell, John E. & Sharkey, Thomas C. & Wallace, William A., 2012. "Restoring infrastructure systems: An integrated network design and scheduling (INDS) problem," European Journal of Operational Research, Elsevier, vol. 223(3), pages 794-806.
    10. Zou, Qiling & Chen, Suren, 2019. "Enhancing resilience of interdependent traffic-electric power system," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    11. Claudio M. Rocco & Kash Barker & Elvis Hernández‐Perdomo, 2016. "Stochastic Ranking of Alternatives with Ordered Weighted Averaging: Comparing Network Recovery Strategies," Systems Engineering, John Wiley & Sons, vol. 19(5), pages 436-447, September.
    12. David L. Alderson & Gerald G. Brown & W. Matthew Carlyle, 2015. "Operational Models of Infrastructure Resilience," Risk Analysis, John Wiley & Sons, vol. 35(4), pages 562-586, April.
    13. Ramirez-Marquez, Jose E. & Rocco, Claudio M. & Barker, Kash & Moronta, Jose, 2018. "Quantifying the resilience of community structures in networks," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 466-474.
    14. Fang, Yi-Ping & Sansavini, Giovanni, 2019. "Optimum post-disruption restoration under uncertainty for enhancing critical infrastructure resilience," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 1-11.
    15. Li, Zhaolong & Jin, Chun & Hu, Pan & Wang, Cong, 2019. "Resilience-based transportation network recovery strategy during emergency recovery phase under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 503-514.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ebrahimi, Mehrdad & Nobahar, Elnaz & Mohammadi, Reza Karami & Noroozinejad Farsangi, Ehsan & Noori, Mohammad & Li, Shaofan, 2023. "The influence of model and measurement uncertainties on damage detection of experimental structures through recursive algorithms," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    2. Mehryar, Mehdi & Hafezalkotob, Ashkan & Azizi, Amir & Sobhani, Farzad Movahedi, 2023. "Dynamic zoning of the network using cooperative transmission and maintenance planning: A solution for sustainability of water distribution networks," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    3. Liu, Meili & Qi, Xiaogang & Pan, Hao, 2022. "Optimizing communication network geodiversity for disaster resilience through shielding approach," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    4. Li, Qing & Li, Mingchu & Tian, Yuan & Gan, Jianyuan, 2023. "A risk-averse tri-level stochastic model for locating and recovering facilities against attacks in an uncertain environment," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    5. Karakoc, Deniz Berfin & Barker, Kash & González, Andrés D., 2023. "Analyzing the tradeoff between vulnerability and recoverability investments for interdependent infrastructure networks," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    6. Xu, Min & Li, Guoyuan & Chen, Anthony, 2024. "Resilience-driven post-disaster restoration of interdependent infrastructure systems under different decision-making environments," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    7. Jia, Chuanzhou & Zhang, Chi & Li, Yan-Fu & Li, Quan-Lin, 2023. "Joint pre- and post-disaster planning to enhance the resilience of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    8. Zhang, Le & Du, Ye, 2023. "Cascading failure model and resilience enhancement scheme of space information networks," Reliability Engineering and System Safety, Elsevier, vol. 237(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Min & Li, Guoyuan & Chen, Anthony, 2024. "Resilience-driven post-disaster restoration of interdependent infrastructure systems under different decision-making environments," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    2. Alkhaleel, Basem A. & Liao, Haitao & Sullivan, Kelly M., 2022. "Risk and resilience-based optimal post-disruption restoration for critical infrastructures under uncertainty," European Journal of Operational Research, Elsevier, vol. 296(1), pages 174-202.
    3. Jia, Chuanzhou & Zhang, Chi & Li, Yan-Fu & Li, Quan-Lin, 2023. "Joint pre- and post-disaster planning to enhance the resilience of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    4. Zou, Qiling & Chen, Suren, 2021. "Resilience-based Recovery Scheduling of Transportation Network in Mixed Traffic Environment: A Deep-Ensemble-Assisted Active Learning Approach," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    5. Bellè, Andrea & Abdin, Adam F. & Fang, Yi-Ping & Zeng, Zhiguo & Barros, Anne, 2023. "A data-driven distributionally robust approach for the optimal coupling of interdependent critical infrastructures under random failures," European Journal of Operational Research, Elsevier, vol. 309(2), pages 872-889.
    6. Kong, Jingjing & Zhang, Chao & Simonovic, Slobodan P., 2021. "Optimizing the resilience of interdependent infrastructures to regional natural hazards with combined improvement measures," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    7. Hao, Yucheng & Jia, Limin & Zio, Enrico & Wang, Yanhui & Small, Michael & Li, Man, 2023. "Improving resilience of high-speed train by optimizing repair strategies," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    8. Poulin, Craig & Kane, Michael B., 2021. "Infrastructure resilience curves: Performance measures and summary metrics," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    9. Xinhua Mao & Xin Lou & Changwei Yuan & Jibiao Zhou, 2020. "Resilience-Based Restoration Model for Supply Chain Networks," Mathematics, MDPI, vol. 8(2), pages 1-16, January.
    10. Tiong, Achara & Vergara, Hector A., 2023. "Evaluation of network expansion decisions for resilient interdependent critical infrastructures with different topologies," International Journal of Critical Infrastructure Protection, Elsevier, vol. 42(C).
    11. Fang, Yi-Ping & Zio, Enrico, 2019. "An adaptive robust framework for the optimization of the resilience of interdependent infrastructures under natural hazards," European Journal of Operational Research, Elsevier, vol. 276(3), pages 1119-1136.
    12. Morshedlou, Nazanin & González, Andrés D. & Barker, Kash, 2018. "Work crew routing problem for infrastructure network restoration," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 66-89.
    13. Canbilen Sütiçen, Tuğçe & Batun, Sakine & Çelik, Melih, 2023. "Integrated reinforcement and repair of interdependent infrastructure networks under disaster-related uncertainties," European Journal of Operational Research, Elsevier, vol. 308(1), pages 369-384.
    14. Ghorbani-Renani, Nafiseh & González, Andrés D. & Barker, Kash & Morshedlou, Nazanin, 2020. "Protection-interdiction-restoration: Tri-level optimization for enhancing interdependent network resilience," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    15. Akbari, Vahid & Shiri, Davood & Sibel Salman, F., 2021. "An online optimization approach to post-disaster road restoration," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 1-25.
    16. Ulusan, Aybike & Ergun, Özlem, 2021. "Approximate dynamic programming for network recovery problems with stochastic demand," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
    17. Bešinović, Nikola & Ferrari Nassar, Raphael & Szymula, Christopher, 2022. "Resilience assessment of railway networks: Combining infrastructure restoration and transport management," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    18. Ajam, Meraj & Akbari, Vahid & Salman, F. Sibel, 2022. "Routing multiple work teams to minimize latency in post-disaster road network restoration," European Journal of Operational Research, Elsevier, vol. 300(1), pages 237-254.
    19. Mottahedi, Adel & Sereshki, Farhang & Ataei, Mohammad & Qarahasanlou, Ali Nouri & Barabadi, Abbas, 2021. "Resilience estimation of critical infrastructure systems: Application of expert judgment," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    20. Farzaneh, Mohammad Amin & Rezapour, Shabnam & Baghaian, Atefe & Amini, M. Hadi, 2023. "An integrative framework for coordination of damage assessment, road restoration, and relief distribution in disasters," Omega, Elsevier, vol. 115(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:221:y:2022:i:c:s0951832022000552. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.