IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v308y2023i1p369-384.html
   My bibliography  Save this article

Integrated reinforcement and repair of interdependent infrastructure networks under disaster-related uncertainties

Author

Listed:
  • Canbilen Sütiçen, Tuğçe
  • Batun, Sakine
  • Çelik, Melih

Abstract

Natural or human-inflicted disasters may cause large-scale disruptions in the services of infrastructure networks including power, water, and telecommunication. Restoring the services of these infrastructures is vital in the aftermath of the disaster, so that search-and-rescue activities, relief transportation, and restoration efforts can be efficiently facilitated. On the other hand, operations of these infrastructures may depend on receiving services from one another, resulting in an interdependent network structure. Consequently, addressing the decisions of network reinforcement before the disaster and the repairs in its aftermath needs to take into account this interdependent structure, as well as the uncertainties arising from the timing, location, and magnitude of the disaster.

Suggested Citation

  • Canbilen Sütiçen, Tuğçe & Batun, Sakine & Çelik, Melih, 2023. "Integrated reinforcement and repair of interdependent infrastructure networks under disaster-related uncertainties," European Journal of Operational Research, Elsevier, vol. 308(1), pages 369-384.
  • Handle: RePEc:eee:ejores:v:308:y:2023:i:1:p:369-384
    DOI: 10.1016/j.ejor.2022.10.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221722008530
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2022.10.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ouyang, Min & Wang, Zhenghua, 2015. "Resilience assessment of interdependent infrastructure systems: With a focus on joint restoration modeling and analysis," Reliability Engineering and System Safety, Elsevier, vol. 141(C), pages 74-82.
    2. Emily A. Heath & John E. Mitchell & Thomas C. Sharkey, 2016. "Applying ranking and selection procedures to long-term mitigation for improved network restoration," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 4(3), pages 447-481, September.
    3. Xiang He & Yongbo Yuan, 2019. "A Framework of Identifying Critical Water Distribution Pipelines from Recovery Resilience," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(11), pages 3691-3706, September.
    4. Iloglu, Suzan & Albert, Laura A., 2018. "An integrated network design and scheduling problem for network recovery and emergency response," Operations Research Perspectives, Elsevier, vol. 5(C), pages 218-231.
    5. Quentin Botton & Bernard Fortz & Luis Gouveia & Michael Poss, 2013. "Benders Decomposition for the Hop-Constrained Survivable Network Design Problem," INFORMS Journal on Computing, INFORMS, vol. 25(1), pages 13-26, February.
    6. Ajam, Meraj & Akbari, Vahid & Salman, F. Sibel, 2019. "Minimizing latency in post-disaster road clearance operations," European Journal of Operational Research, Elsevier, vol. 277(3), pages 1098-1112.
    7. Sharkey, Thomas C. & Cavdaroglu, Burak & Nguyen, Huy & Holman, Jonathan & Mitchell, John E. & Wallace, William A., 2015. "Interdependent network restoration: On the value of information-sharing," European Journal of Operational Research, Elsevier, vol. 244(1), pages 309-321.
    8. Igor Averbakh & Jordi Pereira, 2012. "The flowtime network construction problem," IISE Transactions, Taylor & Francis Journals, vol. 44(8), pages 681-694.
    9. Almoghathawi, Yasser & Barker, Kash & Albert, Laura A., 2019. "Resilience-driven restoration model for interdependent infrastructure networks," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 12-23.
    10. Fang, Yi-Ping & Zio, Enrico, 2019. "An adaptive robust framework for the optimization of the resilience of interdependent infrastructures under natural hazards," European Journal of Operational Research, Elsevier, vol. 276(3), pages 1119-1136.
    11. Lu, Jie & Gupte, Akshay & Huang, Yongxi, 2018. "A mean-risk mixed integer nonlinear program for transportation network protection," European Journal of Operational Research, Elsevier, vol. 265(1), pages 277-289.
    12. Ghorbani-Renani, Nafiseh & González, Andrés D. & Barker, Kash & Morshedlou, Nazanin, 2020. "Protection-interdiction-restoration: Tri-level optimization for enhancing interdependent network resilience," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    13. Camilo Gomez & Andrés D. González & Hiba Baroud & Claudia D. Bedoya‐Motta, 2019. "Integrating Operational and Organizational Aspects in Interdependent Infrastructure Network Recovery," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 1913-1929, September.
    14. Andrew M. Smith & Andrés D. González & Leonardo Dueñas‐Osorio & Raissa M. D'Souza, 2020. "Interdependent Network Recovery Games," Risk Analysis, John Wiley & Sons, vol. 40(1), pages 134-152, January.
    15. Ajam, Meraj & Akbari, Vahid & Salman, F. Sibel, 2022. "Routing multiple work teams to minimize latency in post-disaster road network restoration," European Journal of Operational Research, Elsevier, vol. 300(1), pages 237-254.
    16. Akbari, Vahid & Salman, F. Sibel, 2017. "Multi-vehicle synchronized arc routing problem to restore post-disaster network connectivity," European Journal of Operational Research, Elsevier, vol. 257(2), pages 625-640.
    17. Baxter, Matthew & Elgindy, Tarek & Ernst, Andreas T. & Kalinowski, Thomas & Savelsbergh, Martin W.P., 2014. "Incremental network design with shortest paths," European Journal of Operational Research, Elsevier, vol. 238(3), pages 675-684.
    18. Nurre, Sarah G. & Cavdaroglu, Burak & Mitchell, John E. & Sharkey, Thomas C. & Wallace, William A., 2012. "Restoring infrastructure systems: An integrated network design and scheduling (INDS) problem," European Journal of Operational Research, Elsevier, vol. 223(3), pages 794-806.
    19. Ouyang, Min, 2017. "A mathematical framework to optimize resilience of interdependent critical infrastructure systems under spatially localized attacks," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1072-1084.
    20. Ece Aslan & Melih Çelik, 2019. "Pre-positioning of relief items under road/facility vulnerability with concurrent restoration and relief transportation," IISE Transactions, Taylor & Francis Journals, vol. 51(8), pages 847-868, August.
    21. Lili Du & Srinivas Peeta, 2014. "A Stochastic Optimization Model to Reduce Expected Post-Disaster Response Time Through Pre-Disaster Investment Decisions," Networks and Spatial Economics, Springer, vol. 14(2), pages 271-295, June.
    22. Maya Duque, Pablo A. & Dolinskaya, Irina S. & Sörensen, Kenneth, 2016. "Network repair crew scheduling and routing for emergency relief distribution problem," European Journal of Operational Research, Elsevier, vol. 248(1), pages 272-285.
    23. Burak Cavdaroglu & Erik Hammel & John Mitchell & Thomas Sharkey & William Wallace, 2013. "Integrating restoration and scheduling decisions for disrupted interdependent infrastructure systems," Annals of Operations Research, Springer, vol. 203(1), pages 279-294, March.
    24. Sanci, Ece & Daskin, Mark S., 2019. "Integrating location and network restoration decisions in relief networks under uncertainty," European Journal of Operational Research, Elsevier, vol. 279(2), pages 335-350.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Garay-Sianca, Aniela & Nurre Pinkley, Sarah G., 2021. "Interdependent integrated network design and scheduling problems with movement of machines," European Journal of Operational Research, Elsevier, vol. 289(1), pages 297-327.
    2. Hao, Yucheng & Jia, Limin & Zio, Enrico & Wang, Yanhui & Small, Michael & Li, Man, 2023. "Improving resilience of high-speed train by optimizing repair strategies," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    3. Sanci, Ece & Daskin, Mark S., 2019. "Integrating location and network restoration decisions in relief networks under uncertainty," European Journal of Operational Research, Elsevier, vol. 279(2), pages 335-350.
    4. Reilly, Allison C. & Baroud, Hiba & Flage, Roger & Gerst, Michael D., 2021. "Sources of uncertainty in interdependent infrastructure and their implications," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    5. Jia, Chuanzhou & Zhang, Chi & Li, Yan-Fu & Li, Quan-Lin, 2023. "Joint pre- and post-disaster planning to enhance the resilience of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    6. Bellè, Andrea & Abdin, Adam F. & Fang, Yi-Ping & Zeng, Zhiguo & Barros, Anne, 2023. "A data-driven distributionally robust approach for the optimal coupling of interdependent critical infrastructures under random failures," European Journal of Operational Research, Elsevier, vol. 309(2), pages 872-889.
    7. Iloglu, Suzan & Albert, Laura A., 2020. "A maximal multiple coverage and network restoration problem for disaster recovery," Operations Research Perspectives, Elsevier, vol. 7(C).
    8. Iloglu, Suzan & Albert, Laura A., 2018. "An integrated network design and scheduling problem for network recovery and emergency response," Operations Research Perspectives, Elsevier, vol. 5(C), pages 218-231.
    9. Kong, Jingjing & Zhang, Chao & Simonovic, Slobodan P., 2021. "Optimizing the resilience of interdependent infrastructures to regional natural hazards with combined improvement measures," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    10. Ni, Ni & Howell, Brendan J. & Sharkey, Thomas C., 2018. "Modeling the impact of unmet demand in supply chain resiliency planning," Omega, Elsevier, vol. 81(C), pages 1-16.
    11. Kaul, Hemanshu & Rumpf, Adam, 2022. "A linear input dependence model for interdependent networks," European Journal of Operational Research, Elsevier, vol. 302(2), pages 781-797.
    12. Sayarshad, Hamid R. & Du, Xinpi & Gao, H. Oliver, 2020. "Dynamic post-disaster debris clearance problem with re-positioning of clearance equipment items under partially observable information," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 352-372.
    13. Alkhaleel, Basem A. & Liao, Haitao & Sullivan, Kelly M., 2022. "Risk and resilience-based optimal post-disruption restoration for critical infrastructures under uncertainty," European Journal of Operational Research, Elsevier, vol. 296(1), pages 174-202.
    14. Souza Almeida, Luana & Goerlandt, Floris & Pelot, Ronald, 2022. "Trends and gaps in the literature of road network repair and restoration in the context of disaster response operations," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    15. Juliette García-Alviz & Gina Galindo & Julián Arellana & Ruben Yie-Pinedo, 2021. "Planning road network restoration and relief distribution under heterogeneous road disruptions," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(4), pages 941-981, December.
    16. Bellè, Andrea & Abdin, Adam F. & Fang, Yi-Ping & Zeng, Zhiguo & Barros, Anne, 2023. "A resilience-based framework for the optimal coupling of interdependent critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    17. Xu, Min & Li, Guoyuan & Chen, Anthony, 2024. "Resilience-driven post-disaster restoration of interdependent infrastructure systems under different decision-making environments," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    18. Ghorbani-Renani, Nafiseh & González, Andrés D. & Barker, Kash & Morshedlou, Nazanin, 2020. "Protection-interdiction-restoration: Tri-level optimization for enhancing interdependent network resilience," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    19. Almoghathawi, Yasser & Selim, Shokri & Barker, Kash, 2023. "Community structure recovery optimization for partial disruption, functionality, and restoration in interdependent networks," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    20. Aybike Ulusan & Ozlem Ergun, 2018. "Restoration of services in disrupted infrastructure systems: A network science approach," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-28, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:308:y:2023:i:1:p:369-384. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.