IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v219y2022ics0951832021006943.html
   My bibliography  Save this article

Data-driven accident consequence assessment on urban gas pipeline network based on machine learning

Author

Listed:
  • Yang, Yang
  • Li, Suzhen
  • Zhang, Pengcheng

Abstract

The accidents in Urban Pipeline Network (UPN) may cause enormous economic loss and serious threats to society and environment. The daily operation and maintenance of UPN is usually associated with many aspects of data. How to take full advantage of these multi-source data in combination with advanced data mining techniques to assess the post-event risk of pipeline accidents is of great significance to management of resilient urban systems. This work first summarizes the factors affecting accident consequence of gas UPN and establishes the risk evaluation indicators. A traditional risk assessment model based on the Kent index method and the analytic hierarchy process is then employed to determine the relative risk value of each pipeline. To reduce the dependency on experts’ subjective judgements or calculation of probability events in a Bayes decision procedure, a data-driven model based on graph embedding and clustering algorithm is proposed. The Graph Convolutional Network (GCN) technique is used to extract the topological features of pipeline network as a complement to the common attribute features considering the top pipelines usually bear comparable level of risks. A case study on a real gas pipeline network consisting of more than 6500 pipelines verifies the effectiveness of the proposed model.

Suggested Citation

  • Yang, Yang & Li, Suzhen & Zhang, Pengcheng, 2022. "Data-driven accident consequence assessment on urban gas pipeline network based on machine learning," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
  • Handle: RePEc:eee:reensy:v:219:y:2022:i:c:s0951832021006943
    DOI: 10.1016/j.ress.2021.108216
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021006943
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.108216?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Porta, Sergio & Crucitti, Paolo & Latora, Vito, 2006. "The network analysis of urban streets: A dual approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 369(2), pages 853-866.
    2. Wang, Zifeng & Li, Suzhen, 2020. "Data-driven risk assessment on urban pipeline network based on a cluster model," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    3. Medeiros, C.P. & Alencar, M.H. & de Almeida, A.T., 2017. "Multidimensional risk evaluation of natural gas pipelines based on a multicriteria decision model using visualization tools and statistical tests for global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 268-276.
    4. Zhang, Y. & Weng, W.G., 2020. "Bayesian network model for buried gas pipeline failure analysis caused by corrosion and external interference," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    5. Liu, Aihua & Chen, Ke & Huang, Xiaofei & Li, Didi & Zhang, Xiaochun, 2021. "Dynamic risk assessment model of buried gas pipelines based on system dynamics," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    6. Zhang, Hewei & Dong, Shaohua & Ling, Jiatong & Zhang, Laibin & Cheang, Brenda, 2020. "A modified method for the safety factor parameter: The use of big data to improve petroleum pipeline reliability assessment," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    7. Wu, Wei-Shing & Yang, Chen-Feng & Chang, Jung-Chuan & Château, Pierre-Alexandre & Chang, Yang-Chi, 2015. "Risk assessment by integrating interpretive structural modeling and Bayesian network, case of offshore pipeline project," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 515-524.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Varbella, Anna & Gjorgiev, Blazhe & Sansavini, Giovanni, 2023. "Geometric deep learning for online prediction of cascading failures in power grids," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    2. Cao, Bohan & Yin, Qishuai & Guo, Yingying & Yang, Jin & Zhang, Laibin & Wang, Zhenquan & Tyagi, Mayank & Sun, Ting & Zhou, Xu, 2023. "Field data analysis and risk assessment of shallow gas hazards based on neural networks during industrial deep-water drilling," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    3. Fan, Shiqi & Yang, Zaili, 2023. "Towards objective human performance measurement for maritime safety: A new psychophysiological data-driven machine learning method," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    4. Gao, Dawei & Zhu, Yongsheng & Yan, Ke & Soares, C. Guedes, 2024. "Deep learning–based framework for regional risk assessment in a multi–ship encounter situation based on the transformer network," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    5. Zhou, Jie & Lin, Haifei & Li, Shugang & Jin, Hongwei & Zhao, Bo & Liu, Shihao, 2023. "Leakage diagnosis and localization of the gas extraction pipeline based on SA-PSO BP neural network," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    6. Zhang, Hengqi & Geng, Hua & Zeng, Huarong & Jiang, Li, 2023. "Dynamic risk evaluation and control of electrical personal accidents," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    7. Yang, Kai & Hou, Lei & Man, Jianfeng & Yu, Qiaoyan & Li, Yu & Zhang, Xinru & Liu, Jiaquan, 2023. "Supply reliability analysis of natural gas pipeline network based on demand-side economic loss risk," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    8. Zhang, Hengqi & Geng, Hua, 2023. "A methodology to identify and assess high-risk causes for electrical personal accidents based on directed weighted CN," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    9. Zhang, Qiongfang & Xu, Nan & Ersoy, Daniel & Liu, Yongming, 2022. "Manifold-based Conditional Bayesian network for aging pipe yield strength estimation with non-destructive measurements," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    10. Xiao, Rui & Zayed, Tarek & Meguid, Mohamed A. & Sushama, Laxmi, 2024. "Improving failure modeling for gas transmission pipelines: A survival analysis and machine learning integrated approach," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    11. Lingyun, Guo & Markus, Niffenegger & Jing, Zhou, 2022. "A novel procedure to evaluate the performance of failure assessment models," Reliability Engineering and System Safety, Elsevier, vol. 226(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Yuanbo & Yang, Hao & Duan, Pengfei & Li, Luling & Zio, Enrico & Liu, Cuiwei & Li, Yuxing, 2022. "Improved quantitative risk assessment of a natural gas pipeline considering high-consequence areas," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    2. Chen, Yinuo & Xie, Shuyi & Tian, Zhigang, 2022. "Risk assessment of buried gas pipelines based on improved cloud-variable weight theory," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    3. Hong, Bingyuan & Shao, Bowen & Guo, Jian & Fu, Jianzhong & Li, Cuicui & Zhu, Baikang, 2023. "Dynamic Bayesian network risk probability evolution for third-party damage of natural gas pipelines," Applied Energy, Elsevier, vol. 333(C).
    4. Medeiros, Cristina Pereira & da Silva, Lucas Borges Leal & Alencar, Marcelo Hazin & de Almeida, Adiel Teixeira, 2021. "A new method for managing multidimensional risks in Natural Gas Pipelines based on non-Expected Utility," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    5. Zhang, Qiongfang & Xu, Nan & Ersoy, Daniel & Liu, Yongming, 2022. "Manifold-based Conditional Bayesian network for aging pipe yield strength estimation with non-destructive measurements," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    6. Ruiz-Tagle, Andres & Lewis, Austin D. & Schell, Colin A. & Lever, Ernest & Groth, Katrina M., 2022. "BaNTERA: A Bayesian Network for Third-Party Excavation Risk Assessment," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    7. Braga, Joaquim A.P. & Andrade, António R., 2021. "Multivariate statistical aggregation and dimensionality reduction techniques to improve monitoring and maintenance in railways: The wheelset component," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    8. Amaya-Gómez, Rafael & Schoefs, Franck & Sánchez-Silva, Mauricio & Muñoz, Felipe & Bastidas-Arteaga, Emilio, 2022. "Matching of corroded defects in onshore pipelines based on In-Line Inspections and Voronoi partitions," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    9. Qing Deng & Kuo Wang & Jiahao Wu & Feng Yu & Huiling Jiang & Lida Huang, 2023. "An integrated model for evaluating the leakage risk of urban gas pipe: a case study based on Chinese real accident data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 319-340, March.
    10. Wu, Xingguang & Huang, Huirong & Xie, Jianyu & Lu, Meixing & Wang, Shaobo & Li, Wang & Huang, Yixuan & Yu, Weichao & Sun, Xiaobo, 2023. "A novel dynamic risk assessment method for the petrochemical industry using bow-tie analysis and Bayesian network analysis method based on the methodological framework of ARAMIS project," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    11. Su, Yue & Li, Jingfa & Yu, Bo & Zhao, Yanlin & Yao, Jun, 2021. "Fast and accurate prediction of failure pressure of oil and gas defective pipelines using the deep learning model," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    12. Jiang, Bin, 2007. "A topological pattern of urban street networks: Universality and peculiarity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 384(2), pages 647-655.
    13. Batac, Rene C. & Cirunay, Michelle T., 2022. "Shortest paths along urban road network peripheries," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 597(C).
    14. Yang, Chao & Chen, Zhuoran & Qian, Jianghai & Han, Dingding & Zhao, Kaidi, 2023. "Simultaneous improvement of multiple transportation performances on link-coupled networks by global dynamic routing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 616(C).
    15. Liu, Aihua & Chen, Ke & Huang, Xiaofei & Li, Didi & Zhang, Xiaochun, 2021. "Dynamic risk assessment model of buried gas pipelines based on system dynamics," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    16. Guanwen Yin & Tianzi Liu & Yanbin Chen & Yiming Hou, 2022. "Disparity and Spatial Heterogeneity of the Correlation between Street Centrality and Land Use Intensity in Jinan, China," IJERPH, MDPI, vol. 19(23), pages 1-23, November.
    17. Qazi, Abroon & Dickson, Alex & Quigley, John & Gaudenzi, Barbara, 2018. "Supply chain risk network management: A Bayesian belief network and expected utility based approach for managing supply chain risks," International Journal of Production Economics, Elsevier, vol. 196(C), pages 24-42.
    18. Boeing, Geoff, 2017. "OSMnx: New Methods for Acquiring, Constructing, Analyzing, and Visualizing Complex Street Networks," SocArXiv q86sd, Center for Open Science.
    19. Zhaoming Yang & Qi Xiang & Yuxuan He & Shiliang Peng & Michael Havbro Faber & Enrico Zio & Lili Zuo & Huai Su & Jinjun Zhang, 2023. "Resilience of Natural Gas Pipeline System: A Review and Outlook," Energies, MDPI, vol. 16(17), pages 1-19, August.
    20. Xiaokun Su & Chenrouyu Zheng & Yefei Yang & Yafei Yang & Wen Zhao & Yue Yu, 2022. "Spatial Structure and Development Patterns of Urban Traffic Flow Network in Less Developed Areas: A Sustainable Development Perspective," Sustainability, MDPI, vol. 14(13), pages 1-18, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:219:y:2022:i:c:s0951832021006943. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.