IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v195y2020ics0951832018311633.html
   My bibliography  Save this article

Predictive group maintenance for multi-system multi-component networks

Author

Listed:
  • Liang, Zhenglin
  • Parlikad, Ajith Kumar

Abstract

Predictive maintenance has become highly popular in recent years due to the emergence of novel condition monitoring and data analysis techniques. However, the application of predictive maintenance at the network-level has not seen much attention in the literature. This paper presents a model for predictive group maintenance for multi-system multi-components networks (MSMCN). These networks are composed of multiple systems that are, in turn, composed of multiple components. In particular, the hierarchical structure of the MSMCN enables different representations of dependences at the network and system levels. The key novelty in the paper is that the designed approach combines analytical and numerical techniques to optimize the predictive group maintenance policy for MSMCNs. Moreover, we introduce a genetic algorithm with agglomerative mutation (GA-A) that enables a more effective evolution of the predictive group maintenance policy. Application of this model on a case study of a two-bridge network made of 23 different components shows a potential 11.27% reduction in maintenance cost, highlighting the model's practical significance.

Suggested Citation

  • Liang, Zhenglin & Parlikad, Ajith Kumar, 2020. "Predictive group maintenance for multi-system multi-component networks," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
  • Handle: RePEc:eee:reensy:v:195:y:2020:i:c:s0951832018311633
    DOI: 10.1016/j.ress.2019.106704
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832018311633
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2019.106704?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Yu & Chen, Yiming & Jiang, Tao, 2018. "On sequence planning for selective maintenance of multi-state systems under stochastic maintenance durations," European Journal of Operational Research, Elsevier, vol. 268(1), pages 113-127.
    2. Do Van, Phuc & Barros, Anne & Bérenguer, Christophe & Bouvard, Keomany & Brissaud, Florent, 2013. "Dynamic grouping maintenance with time limited opportunities," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 51-59.
    3. Zhou, Xiaojun & Lu, Zhiqiang & Xi, Lifeng, 2012. "Preventive maintenance optimization for a multi-component system under changing job shop schedule," Reliability Engineering and System Safety, Elsevier, vol. 101(C), pages 14-20.
    4. Young K. Yoo, 2011. "Operating characteristics of a failure counting group replacement policy," International Journal of Systems Science, Taylor & Francis Journals, vol. 42(3), pages 499-506.
    5. Aizpurua, J.I. & Catterson, V.M. & Papadopoulos, Y. & Chiacchio, F. & D'Urso, D., 2017. "Supporting group maintenance through prognostics-enhanced dynamic dependability prediction," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 171-188.
    6. Truong Ba, H. & Cholette, M.E. & Borghesani, P. & Zhou, Y. & Ma, L., 2017. "Opportunistic maintenance considering non-homogenous opportunity arrivals and stochastic opportunity durations," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 151-161.
    7. Scarf, Philip A. & Cavalcante, Cristiano A.V., 2010. "Hybrid block replacement and inspection policies for a multi-component system with heterogeneous component lives," European Journal of Operational Research, Elsevier, vol. 206(2), pages 384-394, October.
    8. Yeh, Ruey Huei, 1997. "Optimal inspection and replacement policies for multi-state deteriorating systems," European Journal of Operational Research, Elsevier, vol. 96(2), pages 248-259, January.
    9. Wildeman, R. E. & Dekker, R. & Smit, A. C. J. M., 1997. "A dynamic policy for grouping maintenance activities," European Journal of Operational Research, Elsevier, vol. 99(3), pages 530-551, June.
    10. Ruiz-Castro, Juan Eloy, 2016. "Complex multi-state systems modelled through marked Markovian arrival processes," European Journal of Operational Research, Elsevier, vol. 252(3), pages 852-865.
    11. Sheu, Shey-Huei & Jhang, Jhy-Ping, 1997. "A generalized group maintenance policy," European Journal of Operational Research, Elsevier, vol. 96(2), pages 232-247, January.
    12. Dekker, R. & Wildeman, R. E. & van Egmond, R., 1996. "Joint replacement in an operational planning phase," European Journal of Operational Research, Elsevier, vol. 91(1), pages 74-88, May.
    13. Yonit Barron, 2015. "Group replacement policies for a repairable cold standby system with fixed lead times," IISE Transactions, Taylor & Francis Journals, vol. 47(10), pages 1139-1151, October.
    14. Ye, Zhisheng & Li, Zhizhong & Xie, Min, 2010. "Some improvements on adaptive genetic algorithms for reliability-related applications," Reliability Engineering and System Safety, Elsevier, vol. 95(2), pages 120-126.
    15. Van Horenbeek, Adriaan & Pintelon, Liliane, 2013. "A dynamic predictive maintenance policy for complex multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 39-50.
    16. Chen, Tao & Li, Jiawen & Jin, Ping & Cai, Guobiao, 2013. "Reusable rocket engine preventive maintenance scheduling using genetic algorithm," Reliability Engineering and System Safety, Elsevier, vol. 114(C), pages 52-60.
    17. Otero, Daniel F. & Akhavan-Tabatabaei, Raha, 2015. "A stochastic dynamic pricing model for the multiclass problems in the airline industry," European Journal of Operational Research, Elsevier, vol. 242(1), pages 188-200.
    18. Yonit Barron & Uri Yechiali, 2017. "Generalized control-limit preventive repair policies for deteriorating cold and warm standby Markovian systems," IISE Transactions, Taylor & Francis Journals, vol. 49(11), pages 1031-1049, November.
    19. Barron, Yonit & Frostig, Esther & Levikson, Benny, 2006. "Analysis of R out of N systems with several repairmen, exponential life times and phase type repair times: An algorithmic approach," European Journal of Operational Research, Elsevier, vol. 169(1), pages 202-225, February.
    20. Do, Phuc & Vu, Hai Canh & Barros, Anne & Bérenguer, Christophe, 2015. "Maintenance grouping for multi-component systems with availability constraints and limited maintenance teams," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 56-67.
    21. Reza Ahmadi, 2014. "Optimal maintenance scheduling for a complex manufacturing system subject to deterioration," Annals of Operations Research, Springer, vol. 217(1), pages 1-29, June.
    22. Xia, Tangbin & Jin, Xiaoning & Xi, Lifeng & Ni, Jun, 2015. "Production-driven opportunistic maintenance for batch production based on MAM–APB scheduling," European Journal of Operational Research, Elsevier, vol. 240(3), pages 781-790.
    23. Vu, Hai Canh & Do, Phuc & Barros, Anne & Bérenguer, Christophe, 2014. "Maintenance grouping strategy for multi-component systems with dynamic contexts," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 233-249.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Gehui & Chen, Shaokuan & Jin, Hua & Liu, Shuang, 2021. "Optimum opportunistic maintenance schedule incorporating delay time theory with imperfect maintenance," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    2. Wang, Jingjing & Miao, Yonghao, 2021. "Optimal preventive maintenance policy of the balanced system under the semi-Markov model," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    3. de Pater, Ingeborg & Mitici, Mihaela, 2021. "Predictive maintenance for multi-component systems of repairables with Remaining-Useful-Life prognostics and a limited stock of spare components," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    4. Pedersen, Tom Ivar & Vatn, Jørn, 2022. "Optimizing a condition-based maintenance policy by taking the preferences of a risk-averse decision maker into account," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    5. Manco, Pasquale & Rinaldi, Marta & Caterino, Mario & Fera, Marcello & Macchiaroli, Roberto, 2022. "Maintenance management for geographically distributed assets: a criticality-based approach," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    6. Zhang, Nan & Cai, Kaiquan & Deng, Yingjun & Zhang, Jun, 2023. "Determining the optimal production–maintenance policy of a parallel production system with stochastically interacted yield and deterioration," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    7. Dinh, Duc-Hanh & Do, Phuc & Iung, Benoit, 2022. "Multi-level opportunistic predictive maintenance for multi-component systems with economic dependence and assembly/disassembly impacts," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    8. Urbani, Michele & Brunelli, Matteo & Punkka, Antti, 2023. "An approach for bi-objective maintenance scheduling on a networked system with limited resources," European Journal of Operational Research, Elsevier, vol. 305(1), pages 101-113.
    9. Xia, Tangbin & Cao, Lei & Xu, Yuhui & Zhang, Kaigan & Chen, Zhen & Pan, Ershun & Xi, Lifeng, 2024. "Multi-level maintenance and inventory joint optimization for a k-out-of-n hyper-system considering the selection of suppliers with incentive discount policies," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    10. Liu, Gehui & Chen, Shaokuan & Ho, Tinkin & Ran, Xinchen & Mao, Baohua & Lan, Zhen, 2022. "Optimum opportunistic maintenance schedule over variable horizons considering multi-stage degradation and dynamic strategy," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    11. Li, Heping & Zhu, Wenjin & Dieulle, Laurence & Deloux, Estelle, 2022. "Condition-based maintenance strategies for stochastically dependent systems using Nested Lévy copulas," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    12. Jingyi Zhao & Chunhai Gao & Tao Tang, 2022. "A Review of Sustainable Maintenance Strategies for Single Component and Multicomponent Equipment," Sustainability, MDPI, vol. 14(5), pages 1-22, March.
    13. Wang, Yukun & Li, Xiaopeng & Chen, Junyan & Liu, Yiliu, 2022. "A condition-based maintenance policy for multi-component systems subject to stochastic and economic dependencies," Reliability Engineering and System Safety, Elsevier, vol. 219(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vu, Hai Canh & Do, Phuc & Barros, Anne & Bérenguer, Christophe, 2014. "Maintenance grouping strategy for multi-component systems with dynamic contexts," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 233-249.
    2. Wu, Hui & Li, Yan-Fu & Bérenguer, Christophe, 2020. "Optimal inspection and maintenance for a repairable k-out-of-n: G warm standby system," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    3. Ruiz-Castro, Juan Eloy, 2020. "A complex multi-state k-out-of-n: G system with preventive maintenance and loss of units," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    4. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    5. Yonit Barron, 2018. "Group maintenance policies for an R-out-of-N system with phase-type distribution," Annals of Operations Research, Springer, vol. 261(1), pages 79-105, February.
    6. Jiawen Hu & Zuhua Jiang & Haitao Liao, 2017. "Preventive maintenance of a batch production system under time-varying operational condition," International Journal of Production Research, Taylor & Francis Journals, vol. 55(19), pages 5681-5705, October.
    7. Joby K. Jose & M. Drisya, 2020. "Time-dependent stress–strength reliability models based on phase type distribution," Computational Statistics, Springer, vol. 35(3), pages 1345-1371, September.
    8. Aizpurua, J.I. & Catterson, V.M. & Papadopoulos, Y. & Chiacchio, F. & D'Urso, D., 2017. "Supporting group maintenance through prognostics-enhanced dynamic dependability prediction," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 171-188.
    9. Gao, Shan & Wang, Jinting, 2021. "Reliability and availability analysis of a retrial system with mixed standbys and an unreliable repair facility," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    10. Urbani, Michele & Brunelli, Matteo & Punkka, Antti, 2023. "An approach for bi-objective maintenance scheduling on a networked system with limited resources," European Journal of Operational Research, Elsevier, vol. 305(1), pages 101-113.
    11. Jingyi Zhao & Chunhai Gao & Tao Tang, 2022. "A Review of Sustainable Maintenance Strategies for Single Component and Multicomponent Equipment," Sustainability, MDPI, vol. 14(5), pages 1-22, March.
    12. Do, Phuc & Vu, Hai Canh & Barros, Anne & Bérenguer, Christophe, 2015. "Maintenance grouping for multi-component systems with availability constraints and limited maintenance teams," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 56-67.
    13. Vu, Hai Canh & Do, Phuc & Fouladirad, Mitra & Grall, Antoine, 2020. "Dynamic opportunistic maintenance planning for multi-component redundant systems with various types of opportunities," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    14. Li Li & Yong Wang & Kuo-Yi Lin, 2021. "Preventive maintenance scheduling optimization based on opportunistic production-maintenance synchronization," Journal of Intelligent Manufacturing, Springer, vol. 32(2), pages 545-558, February.
    15. Shi, Yue & Zhu, Weihang & Xiang, Yisha & Feng, Qianmei, 2020. "Condition-based maintenance optimization for multi-component systems subject to a system reliability requirement," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    16. Do, Phuc & Assaf, Roy & Scarf, Phil & Iung, Benoit, 2019. "Modelling and application of condition-based maintenance for a two-component system with stochastic and economic dependencies," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 86-97.
    17. Nguyen, Ho Si Hung & Do, Phuc & Vu, Hai-Canh & Iung, Benoit, 2019. "Dynamic maintenance grouping and routing for geographically dispersed production systems," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 392-404.
    18. Vimal Vijayan & Sanjay K Chaturvedi, 2021. "Multi-component maintenance grouping optimization based on stochastic dependency," Journal of Risk and Reliability, , vol. 235(2), pages 293-305, April.
    19. Cavalcante, C.A.V. & Lopes, R.S. & Scarf, P.A., 2018. "A general inspection and opportunistic replacement policy for one-component systems of variable quality," European Journal of Operational Research, Elsevier, vol. 266(3), pages 911-919.
    20. Nguyen, Kim-Anh & Do, Phuc & Grall, Antoine, 2017. "Joint predictive maintenance and inventory strategy for multi-component systems using Birnbaum’s structural importance," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 249-261.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:195:y:2020:i:c:s0951832018311633. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.