IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v188y2019icp532-548.html
   My bibliography  Save this article

Multi-objective optimization of maintenance program in multi-unit nuclear power plant sites

Author

Listed:
  • Zhang, Sai
  • Du, Mengyu
  • Tong, Jiejuan
  • Li, Yan-Fu

Abstract

Maintenance program optimization of nuclear power plants (NPPs) has been a research focus over the past decades, and the existing works are mostly conducted with a one-reactor-at-a-time presumption. Multi-unit NPP site design (i.e., a single site houses multiple reactors), however, is a common case, in which the reactors are not independent from each other, rather, connected by complex intra- and inter-unit mechanisms. To bridge the research gap and generate practically useful results, a methodology of conducting multi-objective optimization for maintenance program in the context of multi-unit NPP sites is proposed in this research. The maintenance optimization is formulated as a tri-objective scheme aiming at minimizing multi-unit unavailability, site-wide risk and cost. Case studies are conducted on feedwater systems adapted from a real-world two-unit NPP site with and without uncertainties. It can be concluded that, for the case studies in this paper, (i) risk attitudes, in the form of weighting factors of risk types with radiological consequences of different severities, of NPP decision makers and regulators could notably affect the optimal maintenance scheduling and the projected objective values; (ii) the optimization model under uncertainties can be taken as a generalization of that without uncertainties and could have the chance of discovering new Pareto-optimal solutions leading to lower costs without compromising multi-unit unavailability or risk.

Suggested Citation

  • Zhang, Sai & Du, Mengyu & Tong, Jiejuan & Li, Yan-Fu, 2019. "Multi-objective optimization of maintenance program in multi-unit nuclear power plant sites," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 532-548.
  • Handle: RePEc:eee:reensy:v:188:y:2019:i:c:p:532-548
    DOI: 10.1016/j.ress.2019.03.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832018307622
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2019.03.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eusgeld, Irene & Nan, Cen & Dietz, Sven, 2011. "“System-of-systems†approach for interdependent critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 96(6), pages 679-686.
    2. Schroer, Suzanne & Modarres, Mohammad, 2013. "An event classification schema for evaluating site risk in a multi-unit nuclear power plant probabilistic risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 117(C), pages 40-51.
    3. Zhou, Taotao & Modarres, Mohammad & Droguett, Enrique López, 2018. "An improved multi-unit nuclear plant seismic probabilistic risk assessment approach," Reliability Engineering and System Safety, Elsevier, vol. 171(C), pages 34-47.
    4. Zio, Enrico & Aven, Terje, 2011. "Uncertainties in smart grids behavior and modeling: What are the risks and vulnerabilities? How to analyze them?," Energy Policy, Elsevier, vol. 39(10), pages 6308-6320, October.
    5. Li, Yanfu & Zio, Enrico, 2012. "Uncertainty analysis of the adequacy assessment model of a distributed generation system," Renewable Energy, Elsevier, vol. 41(C), pages 235-244.
    6. Zio, Enrico & Podofillini, Luca, 2007. "Importance measures and genetic algorithms for designing a risk-informed optimally balanced system," Reliability Engineering and System Safety, Elsevier, vol. 92(10), pages 1435-1447.
    7. Ferrario, E. & Zio, E., 2014. "Assessing nuclear power plant safety and recovery from earthquakes using a system-of-systems approach," Reliability Engineering and System Safety, Elsevier, vol. 125(C), pages 103-116.
    8. Martorell, S. & Sanchez, A. & Carlos, S., 2007. "A tolerance interval based approach to address uncertainty for RAMS+C optimization," Reliability Engineering and System Safety, Elsevier, vol. 92(4), pages 408-422.
    9. Stanley Kaplan & B. John Garrick, 1981. "On The Quantitative Definition of Risk," Risk Analysis, John Wiley & Sons, vol. 1(1), pages 11-27, March.
    10. Zhang, Sai & Tong, Jiejuan & Zhao, Jun, 2016. "An integrated modeling approach for event sequence development in multi-unit probabilistic risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 155(C), pages 147-159.
    11. Le Duy, Tu Duong & Vasseur, Dominique & Serdet, Emmanuel, 2016. "Probabilistic Safety Assessment of twin-unit nuclear sites: Methodological elements," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 250-261.
    12. Konak, Abdullah & Coit, David W. & Smith, Alice E., 2006. "Multi-objective optimization using genetic algorithms: A tutorial," Reliability Engineering and System Safety, Elsevier, vol. 91(9), pages 992-1007.
    13. Le Duy, Tu Duong & Vasseur, Dominique, 2018. "A practical methodology for modeling and estimation of common cause failure parameters in multi-unit nuclear PSA model," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 159-174.
    14. Modarres, Mohammad & Zhou, Taotao & Massoud, Mahmoud, 2017. "Advances in multi-unit nuclear power plant probabilistic risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 87-100.
    15. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sadeghian, Omid & Mohammadpour Shotorbani, Amin & Mohammadi-Ivatloo, Behnam & Sadiq, Rehan & Hewage, Kasun, 2021. "Risk-averse maintenance scheduling of generation units in combined heat and power systems with demand response," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    2. Hao, Zhaojun & Di Maio, Francesco & Zio, Enrico, 2023. "A sequential decision problem formulation and deep reinforcement learning solution of the optimization of O&M of cyber-physical energy systems (CPESs) for reliable and safe power production and supply," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    3. Si, Guojin & Xia, Tangbin & Gebraeel, Nagi & Wang, Dong & Pan, Ershun & Xi, Lifeng, 2022. "A reliability-and-cost-based framework to optimize maintenance planning and diverse-skilled technician routing for geographically distributed systems," Reliability Engineering and System Safety, Elsevier, vol. 226(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Taotao & Modarres, Mohammad & Droguett, Enrique López, 2021. "Multi-unit nuclear power plant probabilistic risk assessment: A comprehensive survey," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    2. Arigi, Awwal Mohammed & Park, Gayoung & Kim, Jonghyun, 2020. "Dependency analysis method for human failure events in multi-unit probabilistic safety assessments," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    3. Jang, Seunghyun & Jae, Moosung, 2020. "A development of methodology for assessing the inter-unit common cause failure in multi-unit PSA model," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    4. Kim, Dong-San & Park, Jin Hee & Lim, Ho-Gon, 2020. "A pragmatic approach to modeling common cause failures in multi-unit PSA for nuclear power plant sites with a large number of units," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    5. Yoon, Jae Young & Kim, Dong-San, 2022. "Estimating the adverse effects of inter-unit radioactive release on operator actions at a multi-unit site," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    6. Woo Sik Jung, 2021. "A Method to Avoid Underestimated Risks in Seismic SUPSA and MUPSA for Nuclear Power Plants Caused by Partitioning Events," Energies, MDPI, vol. 14(8), pages 1-13, April.
    7. Jang, Seunghyun & Kim, Yongjin & Jae, Moosung, 2021. "A site risk assessment for internal events: A case study," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    8. DeJesus Segarra, Jonathan & Bensi, Michelle & Modarres, Mohammad, 2023. "Multi-unit seismic probabilistic risk assessment: A Bayesian network perspective," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    9. Compare, M. & Martini, F. & Zio, E., 2015. "Genetic algorithms for condition-based maintenance optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 244(2), pages 611-623.
    10. Song, Wonjong & Park, Sunghyun & Seo, Yein & Jae, Moosung, 2020. "A source term binning methodology for multi-unit consequence analyses," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    11. Kim, Yongjin & Jang, Seunghyun & Jae, Moosung, 2022. "Evaluation of inter-unit dependency effect on site core damage frequency: Internal and seismic event," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    12. Zhou, Taotao & Modarres, Mohammad & Droguett, Enrique López, 2019. "Multi-unit risk aggregation with consideration of uncertainty and bias in risk metrics," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 473-482.
    13. Johnson, Caroline A. & Flage, Roger & Guikema, Seth D., 2021. "Feasibility study of PRA for critical infrastructure risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    14. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    15. Zio, Enrico, 2016. "Challenges in the vulnerability and risk analysis of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 137-150.
    16. Xiaohui Chen & Lin Zhang & Ze Zhang, 2020. "An integrated model for maintenance policies and production scheduling based on immune–culture algorithm," Journal of Risk and Reliability, , vol. 234(5), pages 651-663, October.
    17. Mandelli, D. & Parisi, C. & Alfonsi, A. & Maljovec, D. & Boring, R. & Ewing, S. & St Germain, S. & Smith, C. & Rabiti, C. & Rasmussen, M., 2019. "Multi-unit dynamic PRA," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 303-317.
    18. Wang, Wei & Cova, Gregorio & Zio, Enrico, 2022. "A clustering-based framework for searching vulnerabilities in the operation dynamics of Cyber-Physical Energy Systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    19. Cai, Yinan & Golay, Michael W., 2020. "Formulation of A Risk Assessment Framework Capable of Analyzing Nuclear Power Multiunit Accident Scenarios," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    20. Geon Gyu Choi & Woo Sik Jung & Seong Kyu Park, 2021. "Sensitivity Study on the Correlation Level of Seismic Failures in Seismic Probabilistic Safety Assessments," Energies, MDPI, vol. 14(10), pages 1-20, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:188:y:2019:i:c:p:532-548. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.