IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v116y2013icp8-19.html
   My bibliography  Save this article

An example of integrated approach to technical and economic optimization of maintenance

Author

Listed:
  • Remy, Emmanuel
  • Corset, Franck
  • Despréaux, Stéphane
  • Doyen, Laurent
  • Gaudoin, Olivier

Abstract

This paper presents a case study of technical and economic optimization of the periodicity of predetermined preventive maintenance actions carried out on a repairable industrial system from an EDF electric power plant. This analysis is conducted with the MARS software tool (MARS for “maintenance assessment of repairable systems†), developed jointly by Grenoble University and EDF R&D. The innovative aspect of this work lies in the integrated approach that is used, combining two steps. A first estimation step retrospectively assesses maintenance effect on system reliability. A second simulation step predicts the behavior of the maintained system over the time period set as an objective by the operator. The different stages of the case study are described in detail with elaborated considerations about optimization of the periodicity of preventive maintenance.

Suggested Citation

  • Remy, Emmanuel & Corset, Franck & Despréaux, Stéphane & Doyen, Laurent & Gaudoin, Olivier, 2013. "An example of integrated approach to technical and economic optimization of maintenance," Reliability Engineering and System Safety, Elsevier, vol. 116(C), pages 8-19.
  • Handle: RePEc:eee:reensy:v:116:y:2013:i:c:p:8-19
    DOI: 10.1016/j.ress.2013.02.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832013000355
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2013.02.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Veber, B. & Nagode, M. & Fajdiga, M., 2008. "Generalized renewal process for repairable systems based on finite Weibull mixture," Reliability Engineering and System Safety, Elsevier, vol. 93(10), pages 1461-1472.
    2. Doyen, L., 2012. "Reliability analysis and joint assessment of Brown–Proschan preventive maintenance efficiency and intrinsic wear-out," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4433-4449.
    3. Michael Bartholomew-Biggs, 2008. "Nonlinear Optimization with Engineering Applications," Springer Optimization and Its Applications, Springer, number 978-0-387-78723-7, September.
    4. Pham, Hoang & Wang, Hongzhou, 1996. "Imperfect maintenance," European Journal of Operational Research, Elsevier, vol. 94(3), pages 425-438, November.
    5. Nicolas Bousquet, 2008. "Diagnostics of prior-data agreement in applied Bayesian analysis," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(9), pages 1011-1029.
    6. Vatn, Jørn & Aven, Terje, 2010. "An approach to maintenance optimization where safety issues are important," Reliability Engineering and System Safety, Elsevier, vol. 95(1), pages 58-63.
    7. Dijoux, Yann, 2009. "A virtual age model based on a bathtub shaped initial intensity," Reliability Engineering and System Safety, Elsevier, vol. 94(5), pages 982-989.
    8. Kenneth P. Burnham & David R. Anderson, 2004. "Multimodel Inference," Sociological Methods & Research, , vol. 33(2), pages 261-304, November.
    9. Sanchez, Ana & Carlos, Sofia & Martorell, Sebastian & Villanueva, Jose F., 2009. "Addressing imperfect maintenance modelling uncertainty in unavailability and cost based optimization," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 22-32.
    10. Chris T. Volinsky & Adrian E. Raftery, 2000. "Bayesian Information Criterion for Censored Survival Models," Biometrics, The International Biometric Society, vol. 56(1), pages 256-262, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cholette, Michael E. & Yu, Hongyang & Borghesani, Pietro & Ma, Lin & Kent, Geoff, 2019. "Degradation modeling and condition-based maintenance of boiler heat exchangers using gamma processes," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 184-196.
    2. Toledo, Maria Luíza Guerra de & Freitas, Marta A. & Colosimo, Enrico A. & Gilardoni, Gustavo L., 2015. "ARA and ARI imperfect repair models: Estimation, goodness-of-fit and reliability prediction," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 107-115.
    3. Dewan, Isha & Dijoux, Yann, 2015. "Modelling repairable systems with an early life under competing risks and asymmetric virtual age," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 215-224.
    4. Gómez Fernández, Juan F. & Márquez, Adolfo Crespo & López-Campos, Mónica A., 2016. "Customer-oriented risk assessment in network utilities," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 72-83.
    5. Perez-Canto, Salvador & Rubio-Romero, Juan Carlos, 2013. "A model for the preventive maintenance scheduling of power plants including wind farms," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 67-75.
    6. Doyen, Laurent & Gaudoin, Olivier & Syamsundar, Annamraju, 2017. "On geometric reduction of age or intensity models for imperfect maintenance," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 40-52.
    7. López-Santana, Eduyn & Akhavan-Tabatabaei, Raha & Dieulle, Laurence & Labadie, Nacima & Medaglia, Andrés L., 2016. "On the combined maintenance and routing optimization problem," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 199-214.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tanwar, Monika & Rai, Rajiv N. & Bolia, Nomesh, 2014. "Imperfect repair modeling using Kijima type generalized renewal process," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 24-31.
    2. Dewan, Isha & Dijoux, Yann, 2015. "Modelling repairable systems with an early life under competing risks and asymmetric virtual age," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 215-224.
    3. Doyen, L., 2014. "Semi-parametric estimation of Brown–Proschan preventive maintenance effects and intrinsic wear-out," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 206-222.
    4. Flage, Roger, 2014. "A delay time model with imperfect and failure-inducing inspections," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 1-12.
    5. Le, Minh Duc & Tan, Cher Ming, 2013. "Optimal maintenance strategy of deteriorating system under imperfect maintenance and inspection using mixed inspectionscheduling," Reliability Engineering and System Safety, Elsevier, vol. 113(C), pages 21-29.
    6. Thiago Lima de Barros & Rodrigo Sampaio Lopes, 2021. "Continuous improvement of imperfect maintenance actions in PAS and PAR models," Journal of Risk and Reliability, , vol. 235(5), pages 941-958, October.
    7. Chaoqun Duan & Chao Deng & Bingran Wang, 2019. "Multi-phase sequential preventive maintenance scheduling for deteriorating repairable systems," Journal of Intelligent Manufacturing, Springer, vol. 30(4), pages 1779-1793, April.
    8. Dijoux, Yann & Fouladirad, Mitra & Nguyen, Dinh Tuan, 2016. "Statistical inference for imperfect maintenance models with missing data," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 84-96.
    9. Yang, Duo & He, Zhen & He, Shuguang, 2016. "Warranty claims forecasting based on a general imperfect repair model considering usage rate," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 147-154.
    10. Xiang, Yisha, 2013. "Joint optimization of X¯ control chart and preventive maintenance policies: A discrete-time Markov chain approach," European Journal of Operational Research, Elsevier, vol. 229(2), pages 382-390.
    11. Zhao, Xiujie & He, Shuguang & Xie, Min, 2018. "Utilizing experimental degradation data for warranty cost optimization under imperfect repair," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 108-119.
    12. Mark S. Handcock & Adrian E. Raftery & Jeremy M. Tantrum, 2007. "Model‐based clustering for social networks," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(2), pages 301-354, March.
    13. Izquierdo, J. & Márquez, A. Crespo & Uribetxebarria, J. & Erguido, A., 2020. "On the importance of assessing the operational context impact on maintenance management for life cycle cost of wind energy projects," Renewable Energy, Elsevier, vol. 153(C), pages 1100-1110.
    14. Seyed Habib A. Rahmati & Abbas Ahmadi & Kannan Govindan, 2018. "A novel integrated condition-based maintenance and stochastic flexible job shop scheduling problem: simulation-based optimization approach," Annals of Operations Research, Springer, vol. 269(1), pages 583-621, October.
    15. Lawrence Raffalovich & Glenn Deane & David Armstrong & Hui-Shien Tsao, 2008. "Model selection procedures in social research: Monte-Carlo simulation results," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(10), pages 1093-1114.
    16. Guo R. & Ascher H. & Love E., 2001. "Towards Practical and Synthetical Modelling of Repairable Systems," Stochastics and Quality Control, De Gruyter, vol. 16(1), pages 147-182, January.
    17. Malloy, Elizabeth J. & Spiegelman, Donna & Eisen, Ellen A., 2009. "Comparing measures of model selection for penalized splines in Cox models," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2605-2616, May.
    18. Raouf, BOUCEKKINE & Blanca, MARTINEZ & Cagri, SAGLAM, 2006. "Capital Maintenance Vs Technology Adopton under Embodied Technical Progress," Discussion Papers (ECON - Département des Sciences Economiques) 2006030, Université catholique de Louvain, Département des Sciences Economiques.
    19. Macchi, Marco & Garetti, Marco & Centrone, Domenico & Fumagalli, Luca & Piero Pavirani, Gian, 2012. "Maintenance management of railway infrastructures based on reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 104(C), pages 71-83.
    20. Chen, Yiming & Liu, Yu & Jiang, Tao, 2021. "Optimal maintenance strategy for multi-state systems with single maintenance capacity and arbitrarily distributed maintenance time," Reliability Engineering and System Safety, Elsevier, vol. 211(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:116:y:2013:i:c:p:8-19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.