IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v236y2021ics0925527321001079.html
   My bibliography  Save this article

Integrated design of unmanned aerial mobility network: A data-driven risk-averse approach

Author

Listed:
  • Hou, Wenjuan
  • Fang, Tao
  • Pei, Zhi
  • He, Qiao-Chu

Abstract

In this paper, we propose an integrated design problem of Unmanned Aerial Mobility Network (UAMN), which includes airport location selection (strategic decision) and routes planning (operational decision) to minimize the total cost, while guaranteeing flow constraints, capacity constraints, and electricity constraints. To facility expensive long-term infrastructure planning facing demand uncertainty, we develop a data-driven risk-averse two-stage stochastic optimization model based on the Wasserstein distance. The analysis of the numerical examples proves that our DRO framework provides a relatively robust solution for UAMN. Also, we find that the optimal network configuration is affected by the “pooling effects”, which is proved by the fact that the total infrastructure costs can be saved by pooling drone flows into a small number of high-capacity channels/transfer airports. Interestingly, a candidate node without historical demand records can be chosen to locate an airport, in case the demand surges up at this node. We demonstrate the application of our model for a real medical resources transportation problem with our industry partner, collecting donated blood to a blood bank in Hangzhou, China.

Suggested Citation

  • Hou, Wenjuan & Fang, Tao & Pei, Zhi & He, Qiao-Chu, 2021. "Integrated design of unmanned aerial mobility network: A data-driven risk-averse approach," International Journal of Production Economics, Elsevier, vol. 236(C).
  • Handle: RePEc:eee:proeco:v:236:y:2021:i:c:s0925527321001079
    DOI: 10.1016/j.ijpe.2021.108131
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527321001079
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2021.108131?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mete, Huseyin Onur & Zabinsky, Zelda B., 2010. "Stochastic optimization of medical supply location and distribution in disaster management," International Journal of Production Economics, Elsevier, vol. 126(1), pages 76-84, July.
    2. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    3. Stefan Poikonen & Bruce Golden & Edward A. Wasil, 2019. "A Branch-and-Bound Approach to the Traveling Salesman Problem with a Drone," INFORMS Journal on Computing, INFORMS, vol. 31(2), pages 335-346, April.
    4. Hao Shen & Yong Liang & Zuo-Jun Max Shen, 2021. "Reliable Hub Location Model for Air Transportation Networks Under Random Disruptions," Manufacturing & Service Operations Management, INFORMS, vol. 23(2), pages 388-406, March.
    5. Iman Dayarian & Martin Savelsbergh & John-Paul Clarke, 2020. "Same-Day Delivery with Drone Resupply," Transportation Science, INFORMS, vol. 54(1), pages 229-249, January.
    6. Joel Goh & Melvyn Sim, 2010. "Distributionally Robust Optimization and Its Tractable Approximations," Operations Research, INFORMS, vol. 58(4-part-1), pages 902-917, August.
    7. John Gunnar Carlsson & Siyuan Song, 2018. "Coordinated Logistics with a Truck and a Drone," Management Science, INFORMS, vol. 64(9), pages 4052-4069, September.
    8. Jiang, Ruiwei & Zhang, Muhong & Li, Guang & Guan, Yongpei, 2014. "Two-stage network constrained robust unit commitment problem," European Journal of Operational Research, Elsevier, vol. 234(3), pages 751-762.
    9. Erick Delage & Yinyu Ye, 2010. "Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems," Operations Research, INFORMS, vol. 58(3), pages 595-612, June.
    10. Luo, Fengqiao & Mehrotra, Sanjay, 2019. "Decomposition algorithm for distributionally robust optimization using Wasserstein metric with an application to a class of regression models," European Journal of Operational Research, Elsevier, vol. 278(1), pages 20-35.
    11. Gohram Baloch & Fatma Gzara, 2020. "Strategic Network Design for Parcel Delivery with Drones Under Competition," Transportation Science, INFORMS, vol. 54(1), pages 204-228, January.
    12. Jeong, Ho Young & Song, Byung Duk & Lee, Seokcheon, 2019. "Truck-drone hybrid delivery routing: Payload-energy dependency and No-Fly zones," International Journal of Production Economics, Elsevier, vol. 214(C), pages 220-233.
    13. Yanchao Liu, 2019. "A Progressive Motion-Planning Algorithm and Traffic Flow Analysis for High-Density 2D Traffic," Transportation Science, INFORMS, vol. 53(6), pages 1501-1525, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenjuan Hou & Tao Fang & Zhi Pei & Qiao-Chu He, 2020. "Integrated Design of Unmanned Aerial Mobility Network: A Data-Driven Risk-Averse Approach," Papers 2004.13000, arXiv.org.
    2. Nils Boysen & Stefan Fedtke & Stefan Schwerdfeger, 2021. "Last-mile delivery concepts: a survey from an operational research perspective," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(1), pages 1-58, March.
    3. Jiang, Jie & Dai, Ying & Yang, Fei & Ma, Zujun, 2024. "A multi-visit flexible-docking vehicle routing problem with drones for simultaneous pickup and delivery services," European Journal of Operational Research, Elsevier, vol. 312(1), pages 125-137.
    4. Wang, Fan & Zhang, Chao & Zhang, Hui & Xu, Liang, 2021. "Short-term physician rescheduling model with feature-driven demand for mental disorders outpatients," Omega, Elsevier, vol. 105(C).
    5. Xia, Yang & Zeng, Wenjia & Zhang, Canrong & Yang, Hai, 2023. "A branch-and-price-and-cut algorithm for the vehicle routing problem with load-dependent drones," Transportation Research Part B: Methodological, Elsevier, vol. 171(C), pages 80-110.
    6. Haolin Ruan & Zhi Chen & Chin Pang Ho, 2023. "Adjustable Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1002-1023, September.
    7. Liu, Kanglin & Li, Qiaofeng & Zhang, Zhi-Hai, 2019. "Distributionally robust optimization of an emergency medical service station location and sizing problem with joint chance constraints," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 79-101.
    8. Zhi Chen & Peng Xiong, 2023. "RSOME in Python: An Open-Source Package for Robust Stochastic Optimization Made Easy," INFORMS Journal on Computing, INFORMS, vol. 35(4), pages 717-724, July.
    9. Nguyen, Minh Anh & Dang, Giang Thi-Huong & Hà, Minh Hoàng & Pham, Minh-Trien, 2022. "The min-cost parallel drone scheduling vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 299(3), pages 910-930.
    10. Yu, Shaohua & Puchinger, Jakob & Sun, Shudong, 2022. "Van-based robot hybrid pickup and delivery routing problem," European Journal of Operational Research, Elsevier, vol. 298(3), pages 894-914.
    11. Yang, Yu & Yan, Chiwei & Cao, Yufeng & Roberti, Roberto, 2023. "Planning robust drone-truck delivery routes under road traffic uncertainty," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1145-1160.
    12. Feng Liu & Zhi Chen & Shuming Wang, 2023. "Globalized Distributionally Robust Counterpart," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1120-1142, September.
    13. Mengshi Lu & Zuo‐Jun Max Shen, 2021. "A Review of Robust Operations Management under Model Uncertainty," Production and Operations Management, Production and Operations Management Society, vol. 30(6), pages 1927-1943, June.
    14. Zhi Chen & Weijun Xie, 2021. "Regret in the Newsvendor Model with Demand and Yield Randomness," Production and Operations Management, Production and Operations Management Society, vol. 30(11), pages 4176-4197, November.
    15. Yue Zhao & Zhi Chen & Zhenzhen Zhang, 2023. "Distributionally Robust Chance-Constrained p -Hub Center Problem," INFORMS Journal on Computing, INFORMS, vol. 35(6), pages 1361-1382, November.
    16. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    17. Qiqian Zhang & Xiao Huang & Honghai Zhang & Chunyun He, 2023. "Research on Logistics Path Optimization for a Two-Stage Collaborative Delivery System Using Vehicles and UAVs," Sustainability, MDPI, vol. 15(17), pages 1-20, September.
    18. Cheng, Chun & Adulyasak, Yossiri & Rousseau, Louis-Martin, 2020. "Drone routing with energy function: Formulation and exact algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 364-387.
    19. Viet Anh Nguyen & Daniel Kuhn & Peyman Mohajerin Esfahani, 2018. "Distributionally Robust Inverse Covariance Estimation: The Wasserstein Shrinkage Estimator," Papers 1805.07194, arXiv.org.
    20. Mohammad Moshref-Javadi & Kristof P. Cauwenberghe & Brent A. McCunney & Ahmad Hemmati, 2023. "Enabling same-day delivery using a drone resupply model with transshipment points," Computational Management Science, Springer, vol. 20(1), pages 1-31, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:236:y:2021:i:c:s0925527321001079. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.