IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v236y2021ics0925527321000505.html
   My bibliography  Save this article

A multicountry, multicommodity stochastic game theory network model of competition for medical supplies inspired by the Covid-19 pandemic

Author

Listed:
  • Salarpour, Mojtaba
  • Nagurney, Anna

Abstract

In this paper, we construct the first stochastic Generalized Nash Equilibrium model for the study of competition among countries for limited supplies of medical items (PPEs, ventilators, etc.) in the disaster preparedness and response phases in the Covid-19 pandemic. The government of each country is faced with a two-stage stochastic optimization problem in which the first stage is prior to the pandemic declaration and the second stage is post the pandemic declaration. We provide the theoretical constructs, a qualitative analysis, and an algorithm, accompanied by convergence results. Both illustrative examples are presented as well as algorithmically solved numerical examples, inspired by the need for N95 masks and ventilators. The results reveal that, in addition to the preparedness of countries before the pandemic declaration, their ability to adapt to the conditions in different scenarios has a significant impact on their overall success in the management of the pandemic crisis. The framework can capture competition for other medical supplies, including Covid-19 vaccines and possible treatments, with modifications to handle perishability.

Suggested Citation

  • Salarpour, Mojtaba & Nagurney, Anna, 2021. "A multicountry, multicommodity stochastic game theory network model of competition for medical supplies inspired by the Covid-19 pandemic," International Journal of Production Economics, Elsevier, vol. 236(C).
  • Handle: RePEc:eee:proeco:v:236:y:2021:i:c:s0925527321000505
    DOI: 10.1016/j.ijpe.2021.108074
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527321000505
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2021.108074?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mete, Huseyin Onur & Zabinsky, Zelda B., 2010. "Stochastic optimization of medical supply location and distribution in disaster management," International Journal of Production Economics, Elsevier, vol. 126(1), pages 76-84, July.
    2. Alexandre Dolgui & Dmitry Ivanov & Boris Sokolov, 2020. "Reconfigurable supply chain: the X-network," International Journal of Production Research, Taylor & Francis Journals, vol. 58(13), pages 4138-4163, July.
    3. Choi, Tsan-Ming, 2020. "Innovative “Bring-Service-Near-Your-Home” operations under Corona-Virus (COVID-19/SARS-CoV-2) outbreak: Can logistics become the Messiah?," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    4. Sabbaghtorkan, Monir & Batta, Rajan & He, Qing, 2020. "Prepositioning of assets and supplies in disaster operations management: Review and research gap identification," European Journal of Operational Research, Elsevier, vol. 284(1), pages 1-19.
    5. Hamed Mamani & Stephen E. Chick & David Simchi-Levi, 2013. "A Game-Theoretic Model of International Influenza Vaccination Coordination," Management Science, INFORMS, vol. 59(7), pages 1650-1670, July.
    6. Rawls, Carmen G. & Turnquist, Mark A., 2010. "Pre-positioning of emergency supplies for disaster response," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 521-534, May.
    7. Ivanov, Dmitry & Dolgui, Alexandre, 2021. "OR-methods for coping with the ripple effect in supply chains during COVID-19 pandemic: Managerial insights and research implications," International Journal of Production Economics, Elsevier, vol. 232(C).
    8. Anna Nagurney & Min Yu & Deniz Besik, 2017. "Supply chain network capacity competition with outsourcing: a variational equilibrium framework," Journal of Global Optimization, Springer, vol. 69(1), pages 231-254, September.
    9. Elisa F. Long & Eike Nohdurft & Stefan Spinler, 2018. "Spatial Resource Allocation for Emerging Epidemics: A Comparison of Greedy, Myopic, and Dynamic Policies," Manufacturing & Service Operations Management, INFORMS, vol. 20(2), pages 181-198, May.
    10. Ming Liu & Ding Zhang, 2016. "A dynamic logistics model for medical resources allocation in an epidemic control with demand forecast updating," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(6), pages 841-852, June.
    11. Azrah Anparasan & Miguel Lejeune, 2019. "Resource deployment and donation allocation for epidemic outbreaks," Annals of Operations Research, Springer, vol. 283(1), pages 9-32, December.
    12. G Barbarosoǧlu & Y Arda, 2004. "A two-stage stochastic programming framework for transportation planning in disaster response," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(1), pages 43-53, January.
    13. Ivanov, Dmitry, 2020. "Predicting the impacts of epidemic outbreaks on global supply chains: A simulation-based analysis on the coronavirus outbreak (COVID-19/SARS-CoV-2) case," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    14. Enayati, Shakiba & Özaltın, Osman Y., 2020. "Optimal influenza vaccine distribution with equity," European Journal of Operational Research, Elsevier, vol. 283(2), pages 714-725.
    15. Govindan, Kannan & Mina, Hassan & Alavi, Behrouz, 2020. "A decision support system for demand management in healthcare supply chains considering the epidemic outbreaks: A case study of coronavirus disease 2019 (COVID-19)," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
    16. Sanjoy Kumar Paul & Ruhul Sarker & Daryl Essam & Paul Tae-Woo Lee, 2019. "A mathematical modelling approach for managing sudden disturbances in a three-tier manufacturing supply chain," Annals of Operations Research, Springer, vol. 280(1), pages 299-335, September.
    17. Ethan J. Raker & Meghan Zacher & Sarah R. Lowe, 2020. "Lessons from Hurricane Katrina for predicting the indirect health consequences of the COVID-19 pandemic," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 117(23), pages 12595-12597, June.
    18. Anna Nagurney & Mojtaba Salarpour & June Dong & Ladimer S. Nagurney, 2020. "A Stochastic Disaster Relief Game Theory Network Model," SN Operations Research Forum, Springer, vol. 1(2), pages 1-33, June.
    19. John M. Mulvey & Hercules Vladimirou, 1992. "Stochastic Network Programming for Financial Planning Problems," Management Science, INFORMS, vol. 38(11), pages 1642-1664, November.
    20. Michael Greenstone & Vishan Nigam, 2020. "Does Social Distancing Matter?," Working Papers 2020-26, Becker Friedman Institute for Research In Economics.
    21. Stephen E. Chick & Hamed Mamani & David Simchi-Levi, 2008. "Supply Chain Coordination and Influenza Vaccination," Operations Research, INFORMS, vol. 56(6), pages 1493-1506, December.
    22. Azrah A. Anparasan & Miguel A. Lejeune, 2018. "Data laboratory for supply chain response models during epidemic outbreaks," Annals of Operations Research, Springer, vol. 270(1), pages 53-64, November.
    23. Anna Nagurney & Patrizia Daniele & Emilio Alvarez Flores & Valeria Caruso, 2018. "A Variational Equilibrium Network Framework for Humanitarian Organizations in Disaster Relief: Effective Product Delivery Under Competition for Financial Funds," Springer Optimization and Its Applications, in: Ilias S. Kotsireas & Anna Nagurney & Panos M. Pardalos (ed.), Dynamics of Disasters, pages 109-133, Springer.
    24. Tofighi, S. & Torabi, S.A. & Mansouri, S.A., 2016. "Humanitarian logistics network design under mixed uncertainty," European Journal of Operational Research, Elsevier, vol. 250(1), pages 239-250.
    25. Nagurney, Anna & Flores, Emilio Alvarez & Soylu, Ceren, 2016. "A Generalized Nash Equilibrium network model for post-disaster humanitarian relief," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 1-18.
    26. Dmitry Ivanov & Alexandre Dolgui, 2020. "Viability of intertwined supply networks: extending the supply chain resilience angles towards survivability. A position paper motivated by COVID-19 outbreak," International Journal of Production Research, Taylor & Francis Journals, vol. 58(10), pages 2904-2915, May.
    27. Nagurney, Anna & Salarpour, Mojtaba & Daniele, Patrizia, 2019. "An integrated financial and logistical game theory model for humanitarian organizations with purchasing costs, multiple freight service providers, and budget, capacity, and demand constraints," International Journal of Production Economics, Elsevier, vol. 212(C), pages 212-226.
    28. Alem, Douglas & Clark, Alistair & Moreno, Alfredo, 2016. "Stochastic network models for logistics planning in disaster relief," European Journal of Operational Research, Elsevier, vol. 255(1), pages 187-206.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baloch, Gohram & Gzara, Fatma & Elhedhli, Samir, 2023. "Risk-based allocation of COVID-19 personal protective equipment under supply shortages," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1085-1100.
    2. Ma, Jun & Nault, Barrie R. & Tu, Yiliu (Paul), 2023. "Customer segmentation, pricing, and lead time decisions: A stochastic-user-equilibrium perspective," International Journal of Production Economics, Elsevier, vol. 264(C).
    3. Imran Ali & Devika Kannan, 2022. "Mapping research on healthcare operations and supply chain management: a topic modelling-based literature review," Annals of Operations Research, Springer, vol. 315(1), pages 29-55, August.
    4. Gabriella Colajanni & Patrizia Daniele & Daniele Sciacca, 2022. "On the Provision of Services With UAVs in Disaster Scenarios: A Two-Stage Stochastic Approach," SN Operations Research Forum, Springer, vol. 3(1), pages 1-30, March.
    5. Georgia Fargetta & Antonino Maugeri & Laura Scrimali, 2022. "A Stochastic Nash Equilibrium Problem for Medical Supply Competition," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 354-380, June.
    6. Yılmaz, Ömer Faruk & Yeni, Fatma Betül & Gürsoy Yılmaz, Beren & Özçelik, Gökhan, 2023. "An optimization-based methodology equipped with lean tools to strengthen medical supply chain resilience during a pandemic: A case study from Turkey," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    7. Anna Nagurney, 2022. "Supply chain networks, wages, and labor productivity: insights from Lagrange. analysis and computations," Journal of Global Optimization, Springer, vol. 83(3), pages 615-638, July.
    8. Asadpour, Milad & Olsen, Tava Lennon & Boyer, Omid, 2022. "An updated review on blood supply chain quantitative models: A disaster perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    9. Shao, Jianfang & Fan, Yu & Wang, Xihui & Liang, Changyong & Liang, Liang, 2023. "Designing a new framework agreement in humanitarian logistics based on deprivation cost functions," International Journal of Production Economics, Elsevier, vol. 256(C).
    10. Gabriella Colajanni & Patrizia Daniele & Anna Nagurney & Ladimer S. Nagurney & Daniele Sciacca, 2023. "A three-stage stochastic optimization model integrating 5G technology and UAVs for disaster management," Journal of Global Optimization, Springer, vol. 86(3), pages 741-780, July.
    11. Bal'azs Pej'o & Gergely Bicz'ok, 2021. "Games in the Time of COVID-19: Promoting Mechanism Design for Pandemic Response," Papers 2106.12329, arXiv.org, revised Feb 2022.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Umar Farooq & Amjad Hussain & Tariq Masood & Muhammad Salman Habib, 2021. "Supply Chain Operations Management in Pandemics: A State-of-the-Art Review Inspired by COVID-19," Sustainability, MDPI, vol. 13(5), pages 1-33, February.
    2. Maciel M. Queiroz & Dmitry Ivanov & Alexandre Dolgui & Samuel Fosso Wamba, 2022. "Impacts of epidemic outbreaks on supply chains: mapping a research agenda amid the COVID-19 pandemic through a structured literature review," Annals of Operations Research, Springer, vol. 319(1), pages 1159-1196, December.
    3. Chowdhury, Priyabrata & Paul, Sanjoy Kumar & Kaisar, Shahriar & Moktadir, Md. Abdul, 2021. "COVID-19 pandemic related supply chain studies: A systematic review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 148(C).
    4. Xiaoyan Xu & Suresh P. Sethi & Sai‐Ho Chung & Tsan‐Ming Choi, 2023. "Reforming global supply chain management under pandemics: The GREAT‐3Rs framework," Production and Operations Management, Production and Operations Management Society, vol. 32(2), pages 524-546, February.
    5. Choudhury, Nishat Alam & Ramkumar, M. & Schoenherr, Tobias & Singh, Shalabh, 2023. "The role of operations and supply chain management during epidemics and pandemics: Potential and future research opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    6. Anna Nagurney & Mojtaba Salarpour & June Dong & Ladimer S. Nagurney, 2020. "A Stochastic Disaster Relief Game Theory Network Model," SN Operations Research Forum, Springer, vol. 1(2), pages 1-33, June.
    7. Brusset, Xavier & Ivanov, Dmitry & Jebali, Aida & La Torre, Davide & Repetto, Marco, 2023. "A dynamic approach to supply chain reconfiguration and ripple effect analysis in an epidemic," International Journal of Production Economics, Elsevier, vol. 263(C).
    8. Mohammadi, Mehrdad & Dehghan, Milad & Pirayesh, Amir & Dolgui, Alexandre, 2022. "Bi‐objective optimization of a stochastic resilient vaccine distribution network in the context of the COVID‐19 pandemic," Omega, Elsevier, vol. 113(C).
    9. Manupati, Vijaya Kumar & Schoenherr, Tobias & Subramanian, Nachiappan & Ramkumar, M. & Soni, Bhanushree & Panigrahi, Suraj, 2021. "A multi-echelon dynamic cold chain for managing vaccine distribution," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    10. Aghajani, Mojtaba & Ali Torabi, S. & Altay, Nezih, 2023. "Resilient relief supply planning using an integrated procurement-warehousing model under supply disruption," Omega, Elsevier, vol. 118(C).
    11. Rodolfo Modrigais Strauss Nunes & Susana Carla Farias Pereira, 2022. "Intellectual structure and trends in the humanitarian operations field," Annals of Operations Research, Springer, vol. 319(1), pages 1099-1157, December.
    12. Aldrighetti, Riccardo & Battini, Daria & Ivanov, Dmitry & Zennaro, Ilenia, 2021. "Costs of resilience and disruptions in supply chain network design models: A review and future research directions," International Journal of Production Economics, Elsevier, vol. 235(C).
    13. Tang, Lianhua & Li, Yantong & Bai, Danyu & Liu, Tao & Coelho, Leandro C., 2022. "Bi-objective optimization for a multi-period COVID-19 vaccination planning problem," Omega, Elsevier, vol. 110(C).
    14. Rozhkov, Maxim & Ivanov, Dmitry & Blackhurst, Jennifer & Nair, Anand, 2022. "Adapting supply chain operations in anticipation of and during the COVID-19 pandemic," Omega, Elsevier, vol. 110(C).
    15. Burgos, Diana & Ivanov, Dmitry, 2021. "Food retail supply chain resilience and the COVID-19 pandemic: A digital twin-based impact analysis and improvement directions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    16. Abhishek Behl & Pankaj Dutta, 2019. "Humanitarian supply chain management: a thematic literature review and future directions of research," Annals of Operations Research, Springer, vol. 283(1), pages 1001-1044, December.
    17. Moddassir Khan Nayeem & Gyu M. Lee, 2021. "Robust Design of Relief Distribution Networks Considering Uncertainty," Sustainability, MDPI, vol. 13(16), pages 1-24, August.
    18. Seyed Reza Abazari & Fariborz Jolai & Amir Aghsami, 2022. "Designing a humanitarian relief network considering governmental and non-governmental operations under uncertainty," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(3), pages 1430-1452, June.
    19. Queiroz, Maciel M. & Fosso Wamba, Samuel & Chiappetta Jabbour, Charbel Jose & Machado, Marcio C., 2022. "Supply chain resilience in the UK during the coronavirus pandemic: A resource orchestration perspective," International Journal of Production Economics, Elsevier, vol. 245(C).
    20. Yanbin Chang & Yongjia Song & Burak Eksioglu, 2022. "A stochastic look-ahead approach for hurricane relief logistics operations planning under uncertainty," Annals of Operations Research, Springer, vol. 319(1), pages 1231-1263, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:236:y:2021:i:c:s0925527321000505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.