IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v283y2020i2p714-725.html
   My bibliography  Save this article

Optimal influenza vaccine distribution with equity

Author

Listed:
  • Enayati, Shakiba
  • Özaltın, Osman Y.

Abstract

This paper is concerned with the optimal influenza vaccine distribution in a heterogeneous population consisting of multiple subgroups. We employ a compartmental model for influenza transmission and formulate a mathematical program to minimize the number of vaccine doses distributed to effectively extinguish an emerging outbreak in its early stages. We propose an equity constraint to help public health authorities consider fairness when making vaccine distribution decisions. We develop an exact solution approach that generates a vaccine distribution policy with a solution quality guarantee. We perform sensitivity analyses on key epidemic parameters in order to illustrate the application of the proposed model. We then analyze the scalability of the solution approach for a population consisting of subgroups based on geographic location and age. We finally demonstrate the proposed model’s ability to consider vaccine coverage inequity and discuss a derivative-free optimization approach, as an alternative solution method which can consider various different objective functions and constraints. Our results indicate that consideration of group-specific transmission dynamics is paramount to the optimal distribution of influenza vaccines.

Suggested Citation

  • Enayati, Shakiba & Özaltın, Osman Y., 2020. "Optimal influenza vaccine distribution with equity," European Journal of Operational Research, Elsevier, vol. 283(2), pages 714-725.
  • Handle: RePEc:eee:ejores:v:283:y:2020:i:2:p:714-725
    DOI: 10.1016/j.ejor.2019.11.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221719309361
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2019.11.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. João Teles & Pedro Castro & Henrique Matos, 2013. "Multi-parametric disaggregation technique for global optimization of polynomial programming problems," Journal of Global Optimization, Springer, vol. 55(2), pages 227-251, February.
    2. Ozgur Araz & Alison Galvani & Lauren Meyers, 2012. "Geographic prioritization of distributing pandemic influenza vaccines," Health Care Management Science, Springer, vol. 15(3), pages 175-187, September.
    3. Aswin Dhamodharan & Ruben Proano, 2012. "Determining the optimal vaccine vial size in developing countries: a Monte Carlo simulation approach," Health Care Management Science, Springer, vol. 15(3), pages 188-196, September.
    4. Marsh, Michael T. & Schilling, David A., 1994. "Equity measurement in facility location analysis: A review and framework," European Journal of Operational Research, Elsevier, vol. 74(1), pages 1-17, April.
    5. Ruth Misener & Christodoulos Floudas, 2014. "ANTIGONE: Algorithms for coNTinuous / Integer Global Optimization of Nonlinear Equations," Journal of Global Optimization, Springer, vol. 59(2), pages 503-526, July.
    6. Jagpreet Chhatwal & Tianhua He, 2015. "Economic Evaluations with Agent-Based Modelling: An Introduction," PharmacoEconomics, Springer, vol. 33(5), pages 423-433, May.
    7. Duijzer, Lotty Evertje & van Jaarsveld, Willem & Dekker, Rommert, 2018. "Literature review: The vaccine supply chain," European Journal of Operational Research, Elsevier, vol. 268(1), pages 174-192.
    8. Dionne M. Aleman & Theodorus G. Wibisono & Brian Schwartz, 2011. "A Nonhomogeneous Agent-Based Simulation Approach to Modeling the Spread of Disease in a Pandemic Outbreak," Interfaces, INFORMS, vol. 41(3), pages 301-315, June.
    9. Westerink-Duijzer, L.E. & van Jaarsveld, W.L. & Wallinga, J. & Dekker, R., 2016. "The most efficient critical vaccination coverage and its equivalence with maximizing the herd effect," Econometric Institute Research Papers EI2016-06, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    10. Guangping Huang & Ling Li, 2009. "A mathematical model of infectious diseases," Annals of Operations Research, Springer, vol. 168(1), pages 41-80, April.
    11. Ogryczak, Wlodzimierz, 2000. "Inequality measures and equitable approaches to location problems," European Journal of Operational Research, Elsevier, vol. 122(2), pages 374-391, April.
    12. Osman Y. Özaltın & Oleg A. Prokopyev & Andrew J. Schaefer, 2018. "Optimal Design of the Seasonal Influenza Vaccine with Manufacturing Autonomy," INFORMS Journal on Computing, INFORMS, vol. 30(2), pages 371-387, May.
    13. Lotty E. Duijzer & Willem L. van Jaarsveld & Jacco Wallinga & Rommert Dekker, 2018. "Dose†Optimal Vaccine Allocation over Multiple Populations," Production and Operations Management, Production and Operations Management Society, vol. 27(1), pages 143-159, January.
    14. Scott Kolodziej & Pedro Castro & Ignacio Grossmann, 2013. "Global optimization of bilinear programs with a multiparametric disaggregation technique," Journal of Global Optimization, Springer, vol. 57(4), pages 1039-1063, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duijzer, Lotty Evertje & van Jaarsveld, Willem & Dekker, Rommert, 2018. "Literature review: The vaccine supply chain," European Journal of Operational Research, Elsevier, vol. 268(1), pages 174-192.
    2. Duijzer, Lotty Evertje & van Jaarsveld, Willem & Dekker, Rommert, 2018. "The benefits of combining early aspecific vaccination with later specific vaccination," European Journal of Operational Research, Elsevier, vol. 271(2), pages 606-619.
    3. Sengul Orgut, Irem & Freeman, Nickolas & Lewis, Dwight & Parton, Jason, 2023. "Equitable and effective vaccine access considering vaccine hesitancy and capacity constraints," Omega, Elsevier, vol. 120(C).
    4. Westerink-Duijzer, L.E. & Schlicher, L.P.J. & Musegaas, M., 2019. "Fair allocations for cooperation problems in vaccination," Econometric Institute Research Papers EI2019-06, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    5. Lin, Qi & Zhao, Qiuhong & Lev, Benjamin, 2022. "Influenza vaccine supply chain coordination under uncertain supply and demand," European Journal of Operational Research, Elsevier, vol. 297(3), pages 930-948.
    6. Lotty E. Westerink‐Duijzer & Loe P. J. Schlicher & Marieke Musegaas, 2020. "Core Allocations for Cooperation Problems in Vaccination," Production and Operations Management, Production and Operations Management Society, vol. 29(7), pages 1720-1737, July.
    7. De Boeck, Kim & Decouttere, Catherine & Vandaele, Nico, 2020. "Vaccine distribution chains in low- and middle-income countries: A literature review," Omega, Elsevier, vol. 97(C).
    8. Kasin Ransikarbum & Scott J. Mason, 2016. "Multiple-objective analysis of integrated relief supply and network restoration in humanitarian logistics operations," International Journal of Production Research, Taylor & Francis Journals, vol. 54(1), pages 49-68, January.
    9. Fadaki, Masih & Abareshi, Ahmad & Far, Shaghayegh Maleki & Lee, Paul Tae-Woo, 2022. "Multi-period vaccine allocation model in a pandemic: A case study of COVID-19 in Australia," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    10. Tiago Andrade & Fabricio Oliveira & Silvio Hamacher & Andrew Eberhard, 2019. "Enhancing the normalized multiparametric disaggregation technique for mixed-integer quadratic programming," Journal of Global Optimization, Springer, vol. 73(4), pages 701-722, April.
    11. Jianhui Xie & Qiwei Xie & Yongjun Li & Liang Liang, 2021. "Solving data envelopment analysis models with sum-of-fractional objectives: a global optimal approach based on the multiparametric disaggregation technique," Annals of Operations Research, Springer, vol. 304(1), pages 453-480, September.
    12. Jesús Sánchez-Oro & Ana D. López-Sánchez & Anna Martínez-Gavara & Alfredo G. Hernández-Díaz & Abraham Duarte, 2021. "A Hybrid Strategic Oscillation with Path Relinking Algorithm for the Multiobjective k -Balanced Center Location Problem," Mathematics, MDPI, vol. 9(8), pages 1-21, April.
    13. Teles, João P. & Castro, Pedro M. & Matos, Henrique A., 2013. "Univariate parameterization for global optimization of mixed-integer polynomial problems," European Journal of Operational Research, Elsevier, vol. 229(3), pages 613-625.
    14. Vahdani, Behnam & Mohammadi, Mehrdad & Thevenin, Simon & Gendreau, Michel & Dolgui, Alexandre & Meyer, Patrick, 2023. "Fair-split distribution of multi-dose vaccines with prioritized age groups and dynamic demand: The case study of COVID-19," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1249-1272.
    15. Zéphirin Nganmeni & Roland Pongou & Bertrand Tchantcho & Jean‐Baptiste Tondji, 2022. "Vaccine and inclusion," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 24(5), pages 1101-1123, October.
      • Zéphirin Nganmeni & Roland Pongou & Bertrand Tchantcho & Jean-Baptiste Tondji, 2022. "Vaccine and Inclusion," Working Papers 2202E Classification-C62,, University of Ottawa, Department of Economics.
    16. Boukouvala, Fani & Misener, Ruth & Floudas, Christodoulos A., 2016. "Global optimization advances in Mixed-Integer Nonlinear Programming, MINLP, and Constrained Derivative-Free Optimization, CDFO," European Journal of Operational Research, Elsevier, vol. 252(3), pages 701-727.
    17. Pedro Castro & Ignacio Grossmann, 2014. "Optimality-based bound contraction with multiparametric disaggregation for the global optimization of mixed-integer bilinear problems," Journal of Global Optimization, Springer, vol. 59(2), pages 277-306, July.
    18. Filippi, C. & Guastaroba, G. & Speranza, M.G., 2021. "On single-source capacitated facility location with cost and fairness objectives," European Journal of Operational Research, Elsevier, vol. 289(3), pages 959-974.
    19. Chong Hyun Park & Gemma Berenguer, 2020. "Supply Constrained Location‐Distribution in Not‐for‐Profit Settings," Production and Operations Management, Production and Operations Management Society, vol. 29(11), pages 2461-2483, November.
    20. Gutjahr, Walter J., 2021. "Inequity-averse stochastic decision processes," European Journal of Operational Research, Elsevier, vol. 288(1), pages 258-270.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:283:y:2020:i:2:p:714-725. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.