IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v145y2013i2p573-583.html
   My bibliography  Save this article

Maximizing profit for vehicle routing under time and weight constraints

Author

Listed:
  • Yu, Junfang
  • Dong, Yuanyuan

Abstract

Utilizing an empty backhaul vehicle on its way back to its domicile after a normal delivery trip has attracted many logistics carriers and third party logistics companies in the current revenue-hungry economy. In this paper, a backhaul vehicle routing and delivery scheduling problem is studied with the objective of maximizing the total business profit that the vehicle generates during its backhaul trip. The problem has two constraints: the time constraint for the entire backhaul trip and the capacity constraint of the vehicle. It also has two integral parts, vehicle routing and delivery scheduling. An analytical model is developed for this problem, which turned out to be NP-hard to solve due to its complexity. Therefore, the model is decomposed into two parts: finding feasible routes and generating the best delivery schedule for a given route. A heuristic solution is developed to solve the model, in which a genetic based algorithm is used to find the best known feasible route and a linear programming model is used to find the best delivery schedule for a given route. The two solution parts are integrated seamlessly and the best solution is found after iterating through the routes in search for improvement. Numerical study of various sizes of problems has demonstrated that relatively large size of problems could be solved with good solution quality in a reasonable time which is acceptable in real world practice. Third party logistics or other companies could use the solution method provided in this study to utilize their unused vehicle capacity in certain time periods, such as during a backhaul trip, which might be otherwise ignored.

Suggested Citation

  • Yu, Junfang & Dong, Yuanyuan, 2013. "Maximizing profit for vehicle routing under time and weight constraints," International Journal of Production Economics, Elsevier, vol. 145(2), pages 573-583.
  • Handle: RePEc:eee:proeco:v:145:y:2013:i:2:p:573-583
    DOI: 10.1016/j.ijpe.2013.05.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527313002351
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2013.05.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. G. B. Dantzig & J. H. Ramser, 1959. "The Truck Dispatching Problem," Management Science, INFORMS, vol. 6(1), pages 80-91, October.
    2. Pang, King-Wah & Xu, Zhou & Li, Chung-Lun, 2011. "Ship routing problem with berthing time clash avoidance constraints," International Journal of Production Economics, Elsevier, vol. 131(2), pages 752-762, June.
    3. J Dethloff, 2002. "Relation between vehicle routing problems: an insertion heuristic for the vehicle routing problem with simultaneous delivery and pick-up applied to the vehicle routing problem with backhauls," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 53(1), pages 115-118, January.
    4. Beasley, J. E. & Christofides, N., 1997. "Vehicle routing with a sparse feasibility graph," European Journal of Operational Research, Elsevier, vol. 98(3), pages 499-511, May.
    5. Mosheiov, Gur, 1994. "The Travelling Salesman Problem with pick-up and delivery," European Journal of Operational Research, Elsevier, vol. 79(2), pages 299-310, December.
    6. Ting, Chuan-Kang & Liao, Xin-Lan, 2013. "The selective pickup and delivery problem: Formulation and a memetic algorithm," International Journal of Production Economics, Elsevier, vol. 141(1), pages 199-211.
    7. Chris Groër & Bruce Golden & Edward Wasil, 2009. "The Consistent Vehicle Routing Problem," Manufacturing & Service Operations Management, INFORMS, vol. 11(4), pages 630-643, February.
    8. Berbeglia, Gerardo & Cordeau, Jean-François & Laporte, Gilbert, 2010. "Dynamic pickup and delivery problems," European Journal of Operational Research, Elsevier, vol. 202(1), pages 8-15, April.
    9. Wasner, Michael & Zapfel, Gunther, 2004. "An integrated multi-depot hub-location vehicle routing model for network planning of parcel service," International Journal of Production Economics, Elsevier, vol. 90(3), pages 403-419, August.
    10. Hoff, Arild & Gribkovskaia, Irina & Laporte, Gilbert & Løkketangen, Arne, 2009. "Lasso solution strategies for the vehicle routing problem with pickups and deliveries," European Journal of Operational Research, Elsevier, vol. 192(3), pages 755-766, February.
    11. Gribkovskaia, Irina & Halskau, Oyvind sr. & Laporte, Gilbert & Vlcek, Martin, 2007. "General solutions to the single vehicle routing problem with pickups and deliveries," European Journal of Operational Research, Elsevier, vol. 180(2), pages 568-584, July.
    12. Gilbert Laporte, 2009. "Fifty Years of Vehicle Routing," Transportation Science, INFORMS, vol. 43(4), pages 408-416, November.
    13. S Salhi & G Nagy, 1999. "A cluster insertion heuristic for single and multiple depot vehicle routing problems with backhauling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(10), pages 1034-1042, October.
    14. C.D. Tarantilis & C.T. Kiranoudis, 2002. "BoneRoute: An Adaptive Memory-Based Method for Effective Fleet Management," Annals of Operations Research, Springer, vol. 115(1), pages 227-241, September.
    15. Wang, Hsiao-Fan & Chen, Ying-Yen, 2013. "A coevolutionary algorithm for the flexible delivery and pickup problem with time windows," International Journal of Production Economics, Elsevier, vol. 141(1), pages 4-13.
    16. Nagy, Gabor & Salhi, Said, 2005. "Heuristic algorithms for single and multiple depot vehicle routing problems with pickups and deliveries," European Journal of Operational Research, Elsevier, vol. 162(1), pages 126-141, April.
    17. G. Nagy & S. Salhi, 1998. "The many-to-many location-routing problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 6(2), pages 261-275, December.
    18. Hongsheng Zhong & Randolph W. Hall & Maged Dessouky, 2007. "Territory Planning and Vehicle Dispatching with Driver Learning," Transportation Science, INFORMS, vol. 41(1), pages 74-89, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Santos, Maria João & Curcio, Eduardo & Amorim, Pedro & Carvalho, Margarida & Marques, Alexandra, 2021. "A bilevel approach for the collaborative transportation planning problem," International Journal of Production Economics, Elsevier, vol. 233(C).
    2. Kuo, Tsai Chi & Chen, Gary Yu-Hsin & Wang, Miao Ling & Ho, Ming Way, 2014. "Carbon footprint inventory route planning and selection of hot spot suppliers," International Journal of Production Economics, Elsevier, vol. 150(C), pages 125-139.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gribkovskaia, Irina & Halskau, Oyvind sr. & Laporte, Gilbert & Vlcek, Martin, 2007. "General solutions to the single vehicle routing problem with pickups and deliveries," European Journal of Operational Research, Elsevier, vol. 180(2), pages 568-584, July.
    2. Hoff, Arild & Gribkovskaia, Irina & Laporte, Gilbert & Løkketangen, Arne, 2009. "Lasso solution strategies for the vehicle routing problem with pickups and deliveries," European Journal of Operational Research, Elsevier, vol. 192(3), pages 755-766, February.
    3. Maria João Santos & Pedro Amorim & Alexandra Marques & Ana Carvalho & Ana Póvoa, 2020. "The vehicle routing problem with backhauls towards a sustainability perspective: a review," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 358-401, July.
    4. Gábor Nagy & Niaz A. Wassan & M. Grazia Speranza & Claudia Archetti, 2015. "The Vehicle Routing Problem with Divisible Deliveries and Pickups," Transportation Science, INFORMS, vol. 49(2), pages 271-294, May.
    5. Phuong Khanh Nguyen & Teodor Gabriel Crainic & Michel Toulouse, 2017. "Multi-trip pickup and delivery problem with time windows and synchronization," Annals of Operations Research, Springer, vol. 253(2), pages 899-934, June.
    6. Karaoglan, Ismail & Altiparmak, Fulya & Kara, Imdat & Dengiz, Berna, 2012. "The location-routing problem with simultaneous pickup and delivery: Formulations and a heuristic approach," Omega, Elsevier, vol. 40(4), pages 465-477.
    7. Iassinovskaia, Galina & Limbourg, Sabine & Riane, Fouad, 2017. "The inventory-routing problem of returnable transport items with time windows and simultaneous pickup and delivery in closed-loop supply chains," International Journal of Production Economics, Elsevier, vol. 183(PB), pages 570-582.
    8. Santos, Maria João & Jorge, Diana & Ramos, Tânia & Barbosa-Póvoa, Ana, 2023. "Green reverse logistics: Exploring the vehicle routing problem with deliveries and pickups," Omega, Elsevier, vol. 118(C).
    9. Niaz A. Wassan & A. Hameed Wassan & Gábor Nagy, 2008. "A reactive tabu search algorithm for the vehicle routing problem with simultaneous pickups and deliveries," Journal of Combinatorial Optimization, Springer, vol. 15(4), pages 368-386, May.
    10. Jabali, Ola & Gendreau, Michel & Laporte, Gilbert, 2012. "A continuous approximation model for the fleet composition problem," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1591-1606.
    11. Schneider, M., 2016. "The vehicle-routing problem with time windows and driver-specific times," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 65941, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    12. Neves-Moreira, F. & Amorim, P. & Guimarães, L. & Almada-Lobo, B., 2016. "A long-haul freight transportation problem: Synchronizing resources to deliver requests passing through multiple transshipment locations," European Journal of Operational Research, Elsevier, vol. 248(2), pages 487-506.
    13. Schyns, M., 2015. "An ant colony system for responsive dynamic vehicle routing," European Journal of Operational Research, Elsevier, vol. 245(3), pages 704-718.
    14. Jorge Oyola & Halvard Arntzen & David L. Woodruff, 2017. "The stochastic vehicle routing problem, a literature review, Part II: solution methods," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 349-388, December.
    15. Quirion-Blais, Olivier & Chen, Lu, 2021. "A case-based reasoning approach to solve the vehicle routing problem with time windows and drivers’ experience," Omega, Elsevier, vol. 102(C).
    16. Leandro C. Coelho & Jean-François Cordeau & Gilbert Laporte, 2014. "Thirty Years of Inventory Routing," Transportation Science, INFORMS, vol. 48(1), pages 1-19, February.
    17. Ganesh, K. & Narendran, T.T., 2007. "CLOVES: A cluster-and-search heuristic to solve the vehicle routing problem with delivery and pick-up," European Journal of Operational Research, Elsevier, vol. 178(3), pages 699-717, May.
    18. Selim Çetiner & Canan Sepil & Haldun Süral, 2010. "Hubbing and routing in postal delivery systems," Annals of Operations Research, Springer, vol. 181(1), pages 109-124, December.
    19. Zachariadis, Emmanouil E. & Tarantilis, Christos D. & Kiranoudis, Chris T., 2010. "An adaptive memory methodology for the vehicle routing problem with simultaneous pick-ups and deliveries," European Journal of Operational Research, Elsevier, vol. 202(2), pages 401-411, April.
    20. Campelo, Pedro & Neves-Moreira, Fábio & Amorim, Pedro & Almada-Lobo, Bernardo, 2019. "Consistent vehicle routing problem with service level agreements: A case study in the pharmaceutical distribution sector," European Journal of Operational Research, Elsevier, vol. 273(1), pages 131-145.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:145:y:2013:i:2:p:573-583. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.