IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v113y2008i1p413-424.html
   My bibliography  Save this article

A single-lot, unified cost-based flow shop lot-streaming problem

Author

Listed:
  • Sarin, Subhash C.
  • Kalir, Adar A.
  • Chen, Ming

Abstract

Lot streaming is the process of splitting a production lot into sublots, and then, scheduling the sublots in an overlapping fashion on the machines. In this paper, we present a polynomial-time procedure for determining the number of sublots of a single-lot, multiple-machine flow shop lot-streaming problem in order to minimize a unified cost-based objective function that comprises criteria pertaining to makespan, mean flow time, work-in-process, sublot-attached setup and transfer times. An experimental investigation on the performance of this solution procedure shows its efficacy in generating near-optimal solutions. Results on the relative impact of the weights (marginal costs), used in the unified cost function (corresponding to different measures) on the number of sublots obtained, are also presented.

Suggested Citation

  • Sarin, Subhash C. & Kalir, Adar A. & Chen, Ming, 2008. "A single-lot, unified cost-based flow shop lot-streaming problem," International Journal of Production Economics, Elsevier, vol. 113(1), pages 413-424, May.
  • Handle: RePEc:eee:proeco:v:113:y:2008:i:1:p:413-424
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925-5273(07)00300-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bogaschewsky, Ronald W. & Buscher, Udo D. & Lindner, Gerd, 2001. "Optimizing multi-stage production with constant lot size and varying number of unequal sized batches," Omega, Elsevier, vol. 29(2), pages 183-191, April.
    2. S. K. Goyal, 1976. "Note--Note on "Manufacturing Cycle Time Determination for a Multi-Stage Economic Production Quantity Model"," Management Science, INFORMS, vol. 23(3), pages 332-333, November.
    3. C. A. Glass & C. N. Potts, 1998. "Structural Properties of Lot Streaming in a Flow Shop," Mathematics of Operations Research, INFORMS, vol. 23(3), pages 624-639, August.
    4. Hoque, M. A. & Goyal, S. K., 2005. "On lot streaming in multistage production systems," International Journal of Production Economics, Elsevier, vol. 95(2), pages 195-202, February.
    5. Goyal, S. K. & Szendrovits, A. Z., 1986. "A constant lot size model with equal and unequal sized batch shipments between production stages," Engineering Costs and Production Economics, Elsevier, vol. 10(3), pages 203-210, March.
    6. Salah E. Elmaghraby, 1978. "The Economic Lot Scheduling Problem (ELSP): Review and Extensions," Management Science, INFORMS, vol. 24(6), pages 587-598, February.
    7. Ramasesh, Ranga V. & Fu, Haizhen & Fong, Duncan K. H. & Hayya, Jack C., 2000. "Lot streaming in multistage production systems," International Journal of Production Economics, Elsevier, vol. 66(3), pages 199-211, July.
    8. Andrew Z. Szendrovits, 1975. "Manufacturing Cycle Time Determination for a Multi-Stage Economic Production Quantity Model," Management Science, INFORMS, vol. 22(3), pages 298-308, November.
    9. Adar A. Kalir & Subhash C. Sarin, 2003. "Constructing Near Optimal Schedules for the Flow-Shop Lot Streaming Problem with Sublot-Attached Setups," Journal of Combinatorial Optimization, Springer, vol. 7(1), pages 23-44, March.
    10. Drezner, Z. & Szendrovits, A. Z. & Wesolowsky, G. O., 1984. "Multi-stage production with variable lot sizes and transportation of partial lots," European Journal of Operational Research, Elsevier, vol. 17(2), pages 227-237, August.
    11. Dan Trietsch & Kenneth R. Baker, 1993. "Basic Techniques for Lot Streaming," Operations Research, INFORMS, vol. 41(6), pages 1065-1076, December.
    12. Chen, Jiang & Steiner, George, 1997. "Lot streaming with detached setups in three-machine flow shops," European Journal of Operational Research, Elsevier, vol. 96(3), pages 591-611, February.
    13. Sen, Alper & Topaloglu, Engin & Benli, Omer S., 1998. "Optimal streaming of a single job in a two-stage flow shop," European Journal of Operational Research, Elsevier, vol. 110(1), pages 42-62, October.
    14. Hoque, M. A. & Kingsman, B. G., 1995. "An optimal solution algorithm for the constant lot-size model with equal and unequal sized batch shipments for the single product multi-stage production system," International Journal of Production Economics, Elsevier, vol. 42(2), pages 161-174, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arianna Alfieri & Shuyu Zhou & Rosario Scatamacchia & Steef L. van de Velde, 2021. "Dynamic programming algorithms and Lagrangian lower bounds for a discrete lot streaming problem in a two-machine flow shop," 4OR, Springer, vol. 19(2), pages 265-288, June.
    2. Lee, Wen-Chiung & Shiau, Yau-Ren & Chen, Shiuan-Kang & Wu, Chin-Chia, 2010. "A two-machine flowshop scheduling problem with deteriorating jobs and blocking," International Journal of Production Economics, Elsevier, vol. 124(1), pages 188-197, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D Biskup & M Feldmann, 2006. "Lot streaming with variable sublots: an integer programming formulation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(3), pages 296-303, March.
    2. Bogaschewsky, Ronald W. & Buscher, Udo D. & Lindner, Gerd, 2001. "Optimizing multi-stage production with constant lot size and varying number of unequal sized batches," Omega, Elsevier, vol. 29(2), pages 183-191, April.
    3. Chiu, Huan Neng & Chang, Jen Huei, 2005. "Cost models for lot streaming in a multistage flow shop," Omega, Elsevier, vol. 33(5), pages 435-450, October.
    4. Hsiao, Yu-Cheng & Lin, Yi & Huang, Yun-Kuei, 2010. "Optimal multi-stage logistic and inventory policies with production bottleneck in a serial supply chain," International Journal of Production Economics, Elsevier, vol. 124(2), pages 408-413, April.
    5. Wen-Tsung Ho & Jason Chao-Hsien Pan & Yu-Cheng Hsiao, 2012. "Optimizing Multi-stage Production for an Assembly-Type Supply Chain with Unequal Sized Batch Shipments," Journal of Optimization Theory and Applications, Springer, vol. 153(2), pages 513-531, May.
    6. Hoque, M.A. & Kingsman, B.G., 2006. "Synchronization in common cycle lot size scheduling for a multi-product serial supply chain," International Journal of Production Economics, Elsevier, vol. 103(1), pages 316-331, September.
    7. Chung‐Lun Li & Wen‐Qiang Xiao, 2004. "Lot streaming with supplier–manufacturer coordination," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(4), pages 522-542, June.
    8. Hoque, M.A., 2011. "An optimal solution technique to the single-vendor multi-buyer integrated inventory supply chain by incorporating some realistic factors," European Journal of Operational Research, Elsevier, vol. 215(1), pages 80-88, November.
    9. Arianna Alfieri & Shuyu Zhou & Rosario Scatamacchia & Steef L. van de Velde, 2021. "Dynamic programming algorithms and Lagrangian lower bounds for a discrete lot streaming problem in a two-machine flow shop," 4OR, Springer, vol. 19(2), pages 265-288, June.
    10. Hoque, M. A. & Goyal, S. K., 2005. "On lot streaming in multistage production systems," International Journal of Production Economics, Elsevier, vol. 95(2), pages 195-202, February.
    11. Hsiao, Yu-Cheng, 2008. "Integrated logistic and inventory model for a two-stage supply chain controlled by the reorder and shipping points with sharing information," International Journal of Production Economics, Elsevier, vol. 115(1), pages 229-235, September.
    12. Wen-Tsung Ho & Yu-Cheng Hsiao, 2014. "Optimal Mixed Batch Shipment Policy with Variable Safety Factor for the Single-Vendor Single-Buyer Production-Inventory System," Journal of Optimization Theory and Applications, Springer, vol. 161(2), pages 648-663, May.
    13. Hoai Le Thi & Duc Tran, 2014. "Optimizing a multi-stage production/inventory system by DC programming based approaches," Computational Optimization and Applications, Springer, vol. 57(2), pages 441-468, March.
    14. Wen-Tsung Ho & Shu-Fang Lai & Yun-Kuei Huang, 2014. "An Optimal Mixed Batch Shipment Policy for Multiple Items in a Single-Supplier Multiple-Retailer Integrated System," Journal of Optimization Theory and Applications, Springer, vol. 160(2), pages 636-658, February.
    15. Liu, Jiyin, 2008. "Single-job lot streaming in m - 1 two-stage hybrid flowshops," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1171-1183, June.
    16. Kimms, Alf & Drexl, Andreas, 1996. "Multi-level lot sizing: A literature survey," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 405, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    17. Van Nieuwenhuyse, Inneke & Vandaele, Nico, 2004. "Determining the optimal number of sublots in a single-product, deterministic flow shop with overlapping operations," International Journal of Production Economics, Elsevier, vol. 92(3), pages 221-239, December.
    18. Hoque, M. A. & Goyal, S. K., 2000. "An optimal policy for a single-vendor single-buyer integrated production-inventory system with capacity constraint of the transport equipment," International Journal of Production Economics, Elsevier, vol. 65(3), pages 305-315, May.
    19. Kenyon, George & Canel, Cem & Neureuther, Brian D., 2005. "The impact of lot-sizing on net profits and cycle times in the n-job, m-machine job shop with both discrete and batch processing," International Journal of Production Economics, Elsevier, vol. 97(3), pages 263-278, September.
    20. Allahverdi, Ali & Gupta, Jatinder N. D. & Aldowaisan, Tariq, 1999. "A review of scheduling research involving setup considerations," Omega, Elsevier, vol. 27(2), pages 219-239, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:113:y:2008:i:1:p:413-424. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.