IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v611y2023ics0378437122009992.html
   My bibliography  Save this article

An operational simulation framework for modelling the multi-interaction of two-wheelers on mixed-traffic road segments

Author

Listed:
  • Ni, Ying
  • Li, Yixin
  • Yuan, Yufei
  • Sun, Jian

Abstract

In recent years, the interest in riding in cities using the two-wheeler (e.g., bicycles, electric bicycles, electric mopeds, etc.) increases. Mixed-traffic road segments are one of the most common traffic scenes where the mixed two-wheeler flows exist. Because the movements are often not restricted by lanes, the two-wheeler uses lateral road space more freely and shows obvious multilateral interactions (i.e. multi-interaction) with others, bringing issues that endanger traffic safety. A precise estimation of its impacts on traffic operation and safety is necessary, while the microscopic simulation model can satisfy the need as a helpful tool. However, most existing simulation models of these three types of two-wheelers are essentially focusing on handling the one-on-one interaction. The capability to deal with the two-wheeler multi-interaction in mixed traffic is still rare, and the description of what endogenous tasks are contained by the multi-interaction has also not given by literature. To this end, this paper first defines what the multi-interaction entails on the operational behaviour level, claiming that it contains three intertwined processes, namely a (mental) perception, a (mental) decision, and a physical process. The (mental) perception and decision processes represent the recognition of interactions and the response to traffic conditions, while the physical process refers to the execution of these mental activities. A three-layer simulation framework has then been developed, where each layer sequentially corresponds to one of the operational behaviour tasks. Integrated component models are also proposed in each layer to cover these operational tasks. A Comfort Zone model is hence put forward to dynamically perceive the multiple interactive road users, while a Bayesian network model is developed to deal with the decision-making process under multi-interaction situations. Meanwhile, a behaviour force model is also proposed to capture the non-lane based movements following the selected behaviour and current interaction states. Finally, we face validate the proposed models by the comparison between simulation results and observations obtained from trajectory dataset. Results indicate the model performance matches the observed interaction and motion well.

Suggested Citation

  • Ni, Ying & Li, Yixin & Yuan, Yufei & Sun, Jian, 2023. "An operational simulation framework for modelling the multi-interaction of two-wheelers on mixed-traffic road segments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 611(C).
  • Handle: RePEc:eee:phsmap:v:611:y:2023:i:c:s0378437122009992
    DOI: 10.1016/j.physa.2022.128441
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122009992
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.128441?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Jiangtao & Zhou, Xuesong, 2016. "Capacitated transit service network design with boundedly rational agents," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 225-250.
    2. Zhou, Jibiao & Chen, Siyuan & Ma, Changxi & Dong, Sheng, 2022. "Stability analysis of pedestrian traffic flow in horizontal channels: A numerical simulation method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    3. Sun, Yutong & Liu, Hong, 2021. "Crowd evacuation simulation method combining the density field and social force model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    4. Ren, Gang & Jiang, Hang & Chen, Jingxu & Huang, Zhengfeng & Lu, Lili, 2016. "Heterogeneous cellular automata model for straight-through bicycle traffic at signalized intersection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 70-83.
    5. B. Jia & X.-G. Li & R. Jiang & Z.-Y. Gao, 2007. "Multi-value cellular automata model for mixed bicycle flow," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 56(3), pages 247-252, April.
    6. Xue, Shuqi & Jia, Bin & Jiang, Rui & Li, Xingang & Shan, Jingjing, 2017. "An improved Burgers cellular automaton model for bicycle flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 487(C), pages 164-177.
    7. van Lint, J.W.C. & Calvert, S.C., 2018. "A generic multi-level framework for microscopic traffic simulation—Theory and an example case in modelling driver distraction," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 63-86.
    8. Vasic, Jelena & Ruskin, Heather J., 2012. "Cellular automata simulation of traffic including cars and bicycles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2720-2729.
    9. Saifuzzaman, Mohammad & Zheng, Zuduo & Mazharul Haque, Md. & Washington, Simon, 2015. "Revisiting the Task–Capability Interface model for incorporating human factors into car-following models," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 1-19.
    10. Hoogendoorn, S. P. & Bovy, P. H. L., 2004. "Pedestrian route-choice and activity scheduling theory and models," Transportation Research Part B: Methodological, Elsevier, vol. 38(2), pages 169-190, February.
    11. Pengfei Tao & Hongyu Hu & Zhenhai Gao & Xin Liu & Xianmin Song & Yan Xing & Yuzhou Duan & Fulu Wei, 2014. "The Research of the Driver Attention Field Modeling," Discrete Dynamics in Nature and Society, Hindawi, vol. 2014, pages 1-9, January.
    12. Lee, Tzu-Chang & Wong, K.I., 2016. "An agent-based model for queue formation of powered two-wheelers in heterogeneous traffic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 199-216.
    13. Baojin Wang & David Hensher & Tu Ton, 2002. "Safety in the road environment: a driver behavioural response perspective," Transportation, Springer, vol. 29(3), pages 253-270, August.
    14. Li, Yixin & Ni, Ying & Sun, Jian & Ma, Zian, 2020. "Modeling the illegal lane-changing behavior of bicycles on road segments: Considering lane-changing categories and bicycle heterogeneity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    15. Tang, Tie-Qiao & Rui, Ying-Xu & Zhang, Jian & Wang, Tao, 2018. "Impacts of group behavior on bicycle flow at a signalized intersection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1205-1215.
    16. Cornes, F.E. & Frank, G.A. & Dorso, C.O., 2021. "Microscopic dynamics of the evacuation phenomena in the context of the Social Force Model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 568(C).
    17. Jin, Sheng & Qu, Xiaobo & Zhou, Dan & Xu, Cheng & Ma, Dongfang & Wang, Dianhai, 2015. "Estimating cycleway capacity and bicycle equivalent unit for electric bicycles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 225-248.
    18. Treiber, Martin & Kesting, Arne, 2018. "The Intelligent Driver Model with stochasticity – New insights into traffic flow oscillations," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 613-623.
    19. Paulsen, Mads & Rasmussen, Thomas Kjær & Nielsen, Otto Anker, 2019. "Fast or forced to follow: A speed heterogeneous approach to congested multi-lane bicycle traffic simulation," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 72-98.
    20. Che, Maohao & Wong, Yiik Diew & Lum, Kit Meng & Wang, Xueqin, 2021. "Interaction behaviour of active mobility users in shared space," Transportation Research Part A: Policy and Practice, Elsevier, vol. 153(C), pages 52-65.
    21. Hu, Xiaojian & Wang, Wei & Yang, Haifei, 2012. "Mixed traffic flow model considering illegal lane-changing behavior: Simulations in the framework of Kerner’s three-phase theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(21), pages 5102-5111.
    22. Geoffrey Rose, 2012. "E-bikes and urban transportation: emerging issues and unresolved questions," Transportation, Springer, vol. 39(1), pages 81-96, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yixin & Ni, Ying & Sun, Jian & Ma, Zian, 2020. "Modeling the illegal lane-changing behavior of bicycles on road segments: Considering lane-changing categories and bicycle heterogeneity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    2. Paulsen, Mads & Rasmussen, Thomas Kjær & Nielsen, Otto Anker, 2019. "Fast or forced to follow: A speed heterogeneous approach to congested multi-lane bicycle traffic simulation," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 72-98.
    3. Chen, Jingxu & Li, Zhibin & Jiang, Hang & Zhu, Senlai & Wang, Wei, 2017. "Simulating the impacts of on-street vehicle parking on traffic operations on urban streets using cellular automation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 880-891.
    4. Tang, Tie-Qiao & Rui, Ying-Xu & Zhang, Jian & Wang, Tao, 2018. "Impacts of group behavior on bicycle flow at a signalized intersection," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1205-1215.
    5. Mohammadian, Saeed & Zheng, Zuduo & Haque, Mazharul & Bhaskar, Ashish, 2023. "NET-RAT: Non-equilibrium traffic model based on risk allostasis theory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 174(C).
    6. Lyu, Zelin & Hu, Xiaojian & Zhang, Fang & Liu, Tenghui & Cui, Zhiwei, 2022. "Heterogeneous traffic flow characteristics on the highway with a climbing lane under different truck percentages: The framework of Kerner’s three-phase traffic theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 587(C).
    7. Senlai Zhu & Jie Ma & Tianpei Tang & Quan Shi, 2020. "A Combined Modal and Route Choice Behavioral Complementarity Equilibrium Model with Users of Vehicles and Electric Bicycles," IJERPH, MDPI, vol. 17(10), pages 1-18, May.
    8. Jibiao Zhou & Tao Zheng & Sheng Dong & Xinhua Mao & Changxi Ma, 2022. "Impact of Helmet-Wearing Policy on E-Bike Safety Riding Behavior: A Bivariate Ordered Probit Analysis in Ningbo, China," IJERPH, MDPI, vol. 19(5), pages 1-21, February.
    9. Jiaying Qin & Sasa Ma & Lei Zhang & Qianling Wang & Guoce Feng, 2022. "Modeling and Simulation for Non-Motorized Vehicle Flow on Road Based on Modified Social Force Model," Mathematics, MDPI, vol. 11(1), pages 1-18, December.
    10. Xue, Shuqi & Jia, Bin & Jiang, Rui & Li, Xingang & Shan, Jingjing, 2017. "An improved Burgers cellular automaton model for bicycle flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 487(C), pages 164-177.
    11. Guo, Ning & Jiang, Rui & Wong, S.C. & Hao, Qing-Yi & Xue, Shu-Qi & Xiao, Yao & Wu, Chao-Yun, 2020. "Modeling the interactions of pedestrians and cyclists in mixed flow conditions in uni- and bidirectional flows on a shared pedestrian-cycle road," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 259-284.
    12. Rui Jiang & Mao-Bin Hu & Qing-Song Wu & Wei-Guo Song, 2017. "Traffic Dynamics of Bicycle Flow: Experiment and Modeling," Transportation Science, INFORMS, vol. 51(3), pages 998-1008, August.
    13. Li, Meng & Chen, Tao & Du, Hao & Ma, Na & Xi, Xinwei, 2022. "The speed and configuration of cyclist social groups: A field study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 592(C).
    14. Ziwen Ling & Christopher R. Cherry & John H. MacArthur & Jonathan X. Weinert, 2017. "Differences of Cycling Experiences and Perceptions between E-Bike and Bicycle Users in the United States," Sustainability, MDPI, vol. 9(9), pages 1-18, September.
    15. Synek, Stefan & Koenigstorfer, Joerg, 2018. "Exploring adoption determinants of tax-subsidized company-leasing bicycles from the perspective of German employers and employees," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 238-260.
    16. Joohyun Lee & Mardelle McCuskey Shepley, 2020. "College Campuses and Student Walkability: Assessing the Impact of Smartphone Use on Student Perception and Evaluation of Urban Campus Routes," Sustainability, MDPI, vol. 12(23), pages 1-18, November.
    17. Liang, Jinpeng & Wu, Jianjun & Gao, Ziyou & Sun, Huijun & Yang, Xin & Lo, Hong K., 2019. "Bus transit network design with uncertainties on the basis of a metro network: A two-step model framework," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 115-138.
    18. Li, Hongwei & Zhong, Xin & Zhang, Wenbo & Li, Sulan & Xing, Yingying, 2020. "An algorithm for e-bike equivalents at signalized intersections based on traffic conflict events number," Transportation Research Part A: Policy and Practice, Elsevier, vol. 134(C), pages 78-95.
    19. Yuan, Zijian & Wang, Tao & Zhang, Jing & Li, Shubin, 2022. "Influences of dynamic safe headway on car-following behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    20. Mads Paulsen & Thomas Kjær Rasmussen & Otto Anker Nielsen, 2022. "Including Right-of-Way in a Joint Large-Scale Agent-Based Dynamic Traffic Assignment Model for Cars and Bicycles," Networks and Spatial Economics, Springer, vol. 22(4), pages 915-957, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:611:y:2023:i:c:s0378437122009992. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.