IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v609y2023ics0378437122008895.html
   My bibliography  Save this article

Congestion and energy consumption of heterogeneous traffic flow mixed with intelligent connected vehicles and platoons

Author

Listed:
  • Zeng, Junwei
  • Qian, Yongsheng
  • Li, Jiao
  • Zhang, Yongzhi
  • Xu, Dejie

Abstract

In the future, there will inevitably be a mixed driving situation of intelligent connected vehicles and traditional manual driving vehicles. How intelligent connected vehicles affect traditional traffic flow has attracted increasing attention. Based on the different characteristics of these two types of vehicles a two-lane heterogeneous traffic flow cellular automata model of expressway is proposed, and the effects of whether intelligent connected vehicles form platoons and the size of platoons on traffic flow congestion and energy consumption are simulated. The results show that: as the proportion of intelligent connected vehicles and the size of platoons increase, the maximum traffic capacity can be effectively improved. Besides, with the increase of the mixed ratio, the larger the platoon size, the higher the average speed of traffic flow. The platoon can alleviate even eliminate the congestion faster and more thoroughly. However, in the high-density fully intelligent connected vehicles environment, the larger platoon size leads a negative impact on the traffic flow in the form of “moving bottleneck”. When the platoon size is 4, it can maximize the positive effect of the platoon on the traffic flow. Besides, increasing the proportion and shortening the reaction time of intelligent connected vehicles can effectively reduce the average energy consumption. And platoon mode is more conducive to reduce the average energy consumption than the discrete mode, but the platoon size should be controlled within a reasonable range, otherwise too larger platoon size will aggravate the energy consumption in traffic flow.

Suggested Citation

  • Zeng, Junwei & Qian, Yongsheng & Li, Jiao & Zhang, Yongzhi & Xu, Dejie, 2023. "Congestion and energy consumption of heterogeneous traffic flow mixed with intelligent connected vehicles and platoons," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
  • Handle: RePEc:eee:phsmap:v:609:y:2023:i:c:s0378437122008895
    DOI: 10.1016/j.physa.2022.128331
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437122008895
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2022.128331?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Yongfu & Zhao, Hang & Zhang, Li & Zhang, Chao, 2018. "An extended car-following model incorporating the effects of lateral gap and gradient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 177-189.
    2. Wadud, Zia & MacKenzie, Don & Leiby, Paul, 2016. "Help or hindrance? The travel, energy and carbon impacts of highly automated vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 1-18.
    3. Ma, Xinjuan & Ge, Hongxia & Cheng, Rongjun, 2019. "Influences of acceleration with memory on stability of traffic flow and vehicle’s fuel consumption," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 143-154.
    4. Li, Yongfu & Zhong, Zhenyu & Zhang, Kaibi & Zheng, Taixiong, 2019. "A car-following model for electric vehicle traffic flow based on optimal energy consumption," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 533(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feng Xu & Weidi Xu & Xiaona Zhang & Yin Wang & Fu Wang, 2023. "Analysis of Traffic Characteristics and Distance Optimization Design between Entrances and Exits of Urban Construction Projects and Adjacent Planar Intersections," Sustainability, MDPI, vol. 15(11), pages 1-24, May.
    2. Peng, Guanghan & Luo, Chunli & Zhao, Hongzhuan & Tan, Huili, 2023. "Jamming transition in two-lane lattice model integrating the deception attacks on influx during the lane-changing process under vehicle to everything environment," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    3. Chaolun Wang & Wang Xiang & Guiqiu Xu & Xiaomeng Li, 2023. "Effects of Object-Oriented Advance Guidance Signage on Lane-Changing Behaviors at the Mainline Toll Stations of Expressways," Sustainability, MDPI, vol. 15(2), pages 1-16, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kolarova, Viktoriya & Steck, Felix & Bahamonde-Birke, Francisco J., 2019. "Assessing the effect of autonomous driving on value of travel time savings: A comparison between current and future preferences," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 155-169.
    2. Qian, Lixian & Yin, Juelin & Huang, Youlin & Liang, Ya, 2023. "The role of values and ethics in influencing consumers’ intention to use autonomous vehicle hailing services," Technological Forecasting and Social Change, Elsevier, vol. 188(C).
    3. Shiraki, Hiroto & Matsumoto, Ken'ichi & Shigetomi, Yosuke & Ehara, Tomoki & Ochi, Yuki & Ogawa, Yuki, 2020. "Factors affecting CO2 emissions from private automobiles in Japan: The impact of vehicle occupancy," Applied Energy, Elsevier, vol. 259(C).
    4. Xu Kuang & Fuquan Zhao & Han Hao & Zongwei Liu, 2019. "Assessing the Socioeconomic Impacts of Intelligent Connected Vehicles in China: A Cost–Benefit Analysis," Sustainability, MDPI, vol. 11(12), pages 1-28, June.
    5. Dubey, Subodh & Sharma, Ishant & Mishra, Sabyasachee & Cats, Oded & Bansal, Prateek, 2022. "A General Framework to Forecast the Adoption of Novel Products: A Case of Autonomous Vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 63-95.
    6. Dulebenets, Maxim A. & Ozguven, Eren Erman & Moses, Ren, 2018. "The Highway Beautification Act: Towards improving efficiency of the Federal Outdoor Advertising Control Program," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 88-106.
    7. Jia Guo & Yusak Susilo & Constantinos Antoniou & Anna Pernestål Brenden, 2020. "Influence of Individual Perceptions on the Decision to Adopt Automated Bus Services," Sustainability, MDPI, vol. 12(16), pages 1-13, August.
    8. Yuche Chen & Ruixiao Sun & Xuanke Wu, 2021. "Estimating Bounds of Aerodynamic, Mass, and Auxiliary Load Impacts on Autonomous Vehicles: A Powertrain Simulation Approach," Sustainability, MDPI, vol. 13(22), pages 1-13, November.
    9. Li, Dun & Huang, Youlin & Qian, Lixian, 2022. "Potential adoption of robotaxi service: The roles of perceived benefits to multiple stakeholders and environmental awareness," Transport Policy, Elsevier, vol. 126(C), pages 120-135.
    10. Perrine, Kenneth A. & Kockelman, Kara M. & Huang, Yantao, 2020. "Anticipating long-distance travel shifts due to self-driving vehicles," Journal of Transport Geography, Elsevier, vol. 82(C).
    11. Raphael Hoerler & Fabian Haerri & Merja Hoppe, 2019. "New Solutions in Sustainable Commuting—The Attitudes and Experience of European Stakeholders and Experts in Switzerland," Social Sciences, MDPI, vol. 8(7), pages 1-19, July.
    12. Shelly Etzioni & Jamil Hamadneh & Arnór B. Elvarsson & Domokos Esztergár-Kiss & Milena Djukanovic & Stelios N. Neophytou & Jaka Sodnik & Amalia Polydoropoulou & Ioannis Tsouros & Cristina Pronello & N, 2020. "Modeling Cross-National Differences in Automated Vehicle Acceptance," Sustainability, MDPI, vol. 12(22), pages 1-22, November.
    13. Johannes Morfeldt & Daniel J. A. Johansson, 2022. "Impacts of shared mobility on vehicle lifetimes and on the carbon footprint of electric vehicles," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    14. Emberger, Guenter & Pfaffenbichler, Paul, 2020. "A quantitative analysis of potential impacts of automated vehicles in Austria using a dynamic integrated land use and transport interaction model," Transport Policy, Elsevier, vol. 98(C), pages 57-67.
    15. Bray, Garrett & Cebon, David, 2022. "Operational speed strategy opportunities for autonomous trucking on highways," Transportation Research Part A: Policy and Practice, Elsevier, vol. 158(C), pages 75-94.
    16. Wu, Wei & Zhang, Fangni & Liu, Wei & Lodewijks, Gabriel, 2020. "Modelling the traffic in a mixed network with autonomous-driving expressways and non-autonomous local streets," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).
    17. Pi, Dawei & Xue, Pengyu & Wang, Weihua & Xie, Boyuan & Wang, Hongliang & Wang, Xianhui & Yin, Guodong, 2023. "Automotive platoon energy-saving: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    18. Martin Adler & Stefanie Peer & Tanja Sinozic, 2019. "Autonomous, Connected, Electric Shared vehicles (ACES) and public finance: an explorative analysis," Tinbergen Institute Discussion Papers 19-005/VIII, Tinbergen Institute.
    19. Tengilimoglu, Oguz & Carsten, Oliver & Wadud, Zia, 2023. "Implications of automated vehicles for physical road environment: A comprehensive review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).
    20. Meyer, Jonas & Becker, Henrik & Bösch, Patrick M. & Axhausen, Kay W., 2017. "Autonomous vehicles: The next jump in accessibilities?," Research in Transportation Economics, Elsevier, vol. 62(C), pages 80-91.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:609:y:2023:i:c:s0378437122008895. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.