IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v568y2021ics0378437120310128.html
   My bibliography  Save this article

Distress propagation on production networks: Coarse-graining and modularity of linkages

Author

Listed:
  • Kumar, Ashish
  • Chakrabarti, Anindya S.
  • Chakraborti, Anirban
  • Nandi, Tushar

Abstract

Distress propagation occurs in connected networks, its rate and extent being dependent on network topology. To study this, we choose economic production networks as a paradigm. An economic network can be examined at many levels — linkages among individual agents (microscopic), among firms/sectors (mesoscopic) or among countries (macroscopic). New emergent dynamical properties appear at every level, so the granularity matters. For viral epidemics, even an individual node may act as an epicenter of distress and potentially affect the entire network. Economic networks, however, are known to be immune at the micro-levels and more prone to failure in the meso/macro-levels. We propose a dynamical interaction model to characterize the mechanism of distress propagation, across different modules of a network, initiated at different epicenters. Vulnerable modules often lead to large degrees of destabilization. We demonstrate our methodology using a unique empirical data-set of input–output linkages across 0.14 million firms in one administrative state of India, a developing economy. The network has multiple hub-and-spoke structures that exhibits moderate disassortativity, which varies with the level of coarse-graining. The novelty lies in characterizing the production network at different levels of granularity or modularity, and finding ‘too-big-to-fail’ modules supersede ‘too-central-to-fail’ modules in distress propagation.

Suggested Citation

  • Kumar, Ashish & Chakrabarti, Anindya S. & Chakraborti, Anirban & Nandi, Tushar, 2021. "Distress propagation on production networks: Coarse-graining and modularity of linkages," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 568(C).
  • Handle: RePEc:eee:phsmap:v:568:y:2021:i:c:s0378437120310128
    DOI: 10.1016/j.physa.2020.125714
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120310128
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.125714?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrew T. Foerster & Pierre-Daniel G. Sarte & Mark W. Watson, 2011. "Sectoral versus Aggregate Shocks: A Structural Factor Analysis of Industrial Production," Journal of Political Economy, University of Chicago Press, vol. 119(1), pages 1-38.
    2. Vasco M Carvalho & Makoto Nirei & Yukiko U Saito & Alireza Tahbaz-Salehi, 2021. "Supply Chain Disruptions: Evidence from the Great East Japan Earthquake," The Quarterly Journal of Economics, Oxford University Press, vol. 136(2), pages 1255-1321.
    3. Takashi Iino & Hiroshi Iyetomi, 2015. "Community Structure of a Large-Scale Production Network in Japan," Advances in Japanese Business and Economics, in: Tsutomu Watanabe & Iichiro Uesugi & Arito Ono (ed.), The Economics of Interfirm Networks, edition 127, chapter 3, pages 39-65, Springer.
    4. Daron Acemoglu & Ufuk Akcigit & William Kerr, 2016. "Networks and the Macroeconomy: An Empirical Exploration," NBER Macroeconomics Annual, University of Chicago Press, vol. 30(1), pages 273-335.
    5. Jean-Noël Barrot & Julien Sauvagnat, 2016. "Input Specificity and the Propagation of Idiosyncratic Shocks in Production Networks," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(3), pages 1543-1592.
    6. Mankiw, N Gregory, 1989. "Real Business Cycles: A New Keynesian Perspective," Journal of Economic Perspectives, American Economic Association, vol. 3(3), pages 79-90, Summer.
    7. Xavier Gabaix, 2011. "The Granular Origins of Aggregate Fluctuations," Econometrica, Econometric Society, vol. 79(3), pages 733-772, May.
    8. David H. Autor & David Dorn & Gordon H. Hanson, 2013. "The China Syndrome: Local Labor Market Effects of Import Competition in the United States," American Economic Review, American Economic Association, vol. 103(6), pages 2121-2168, October.
    9. Chakrabarti, Anindya S., 2018. "Dispersion in macroeconomic volatility between the core and periphery of the international trade network," Journal of Economic Dynamics and Control, Elsevier, vol. 88(C), pages 31-50.
    10. Y. Fujiwara & H. Aoyama, 2010. "Large-scale structure of a nation-wide production network," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 77(4), pages 565-580, October.
    11. Daron Acemoglu & Asuman Ozdaglar & Alireza Tahbaz-Salehi, 2015. "Systemic Risk and Stability in Financial Networks," American Economic Review, American Economic Association, vol. 105(2), pages 564-608, February.
    12. Abhijit Chakraborty & Yuichi Kichikawa & Takashi Iino & Hiroshi Iyetomi & Hiroyasu Inoue & Yoshi Fujiwara & Hideaki Aoyama, 2018. "Hierarchical communities in the walnut structure of the Japanese production network," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-25, August.
    13. Daron Acemoglu & Vasco M. Carvalho & Asuman Ozdaglar & Alireza Tahbaz‐Salehi, 2012. "The Network Origins of Aggregate Fluctuations," Econometrica, Econometric Society, vol. 80(5), pages 1977-2016, September.
    14. Preis, Tobias & Bardoscia, Marco & Caccioli, Fabio & Perotti, Juan Ignacio & Vivaldo, Gianna & Caldarelli, Guido, 2016. "Distress propagation in complex networks: the case of non-linear DebtRank," LSE Research Online Documents on Economics 68598, London School of Economics and Political Science, LSE Library.
    15. Michele Starnini & Mari'an Bogu~n'a & M. 'Angeles Serrano, 2019. "The interconnected wealth of nations: Shock propagation on global trade-investment multiplex networks," Papers 1901.01976, arXiv.org.
    16. Lucas, Robert E., 1977. "Understanding business cycles," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 5(1), pages 7-29, January.
    17. Sudarshan Kumar & Tiziana Di Matteo & Anindya S. Chakrabarti, 2020. "Disentangling shock diffusion on complex networks: Identification through graph planarity," Papers 2001.01518, arXiv.org.
    18. Horvath, Michael, 2000. "Sectoral shocks and aggregate fluctuations," Journal of Monetary Economics, Elsevier, vol. 45(1), pages 69-106, February.
    19. Marco Bardoscia & Fabio Caccioli & Juan Ignacio Perotti & Gianna Vivaldo & Guido Caldarelli, 2016. "Distress Propagation in Complex Networks: The Case of Non-Linear DebtRank," PLOS ONE, Public Library of Science, vol. 11(10), pages 1-12, October.
    20. Marco Bardoscia & Fabio Caccioli & Juan Ignacio Perotti & Gianna Vivaldo & Guido Caldarelli, 2015. "Distress propagation in complex networks: the case of non-linear DebtRank," Papers 1512.04460, arXiv.org, revised Sep 2016.
    21. Kiran Sharma & Balagopal Gopalakrishnan & Anindya S. Chakrabarti & Anirban Chakraborti, 2016. "Co-movements in financial fluctuations are anchored to economic fundamentals: A mesoscopic mapping," Papers 1612.05952, arXiv.org, revised Jan 2017.
    22. Michael Horvath, 1998. "Cyclicality and Sectoral Linkages: Aggregate Fluctuations from Independent Sectoral Shocks," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 1(4), pages 781-808, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ashish Kumar & Anindya S. Chakrabarti & Anirban Chakraborti & Tushar Nandi, 2020. "Distress propagation on production networks: Coarse-graining and modularity of linkages," Papers 2004.14485, arXiv.org.
    2. Ernesto Pasten & Raphael S. Schoenle & Michael Weber & Michael Weber, 2017. "Price Rigidities and the Granular Origins of Aggregate Fluctuations," CESifo Working Paper Series 6619, CESifo.
    3. Kristina Barauskaite & Anh Dinh Minh Nguyen, 2021. "Direct and network effects of idiosyncratic TFP shocks," Empirical Economics, Springer, vol. 60(6), pages 2765-2793, June.
    4. Daron Acemoglu & Ufuk Akcigit & William Kerr, 2016. "Networks and the Macroeconomy: An Empirical Exploration," NBER Macroeconomics Annual, University of Chicago Press, vol. 30(1), pages 273-335.
    5. Dong, Feng & Wen, Yi, 2019. "Long and Plosser meet Bewley and Lucas," Journal of Monetary Economics, Elsevier, vol. 102(C), pages 70-92.
    6. Ernesto Pasten & Raphael Schoenle & Michael Weber, 2017. "Price Rigidity and the Origins of Aggregate Fluctuations," NBER Working Papers 23750, National Bureau of Economic Research, Inc.
    7. repec:zbw:bofrdp:2018_003 is not listed on IDEAS
    8. Pasten, Ernesto & Schoenle, Raphael & Weber, Michael, 2017. "Price rigidities and the granular origins of aggregate fluctuations," Working Paper Series 2102, European Central Bank.
    9. Emmanuel Dhyne & Ayumu Ken Kikkawa & Glenn Magerman, 2022. "Imperfect Competition in Firm-to-Firm Trade," Journal of the European Economic Association, European Economic Association, vol. 20(5), pages 1933-1970.
    10. repec:zbw:bofrdp:2015_025 is not listed on IDEAS
    11. Glenn Magerman & Karolien De Bruyne & Emmanuel Dhyne & Jan Van Hove, 2016. "Heterogeneous firms and the micro origins of aggregate fluctuations," Working Paper Research 312, National Bank of Belgium.
    12. Kristina Barauskaite & Anh D. M. Nguyen, 2022. "Intersectoral network‐based channel of aggregate TFP shocks," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 3897-3910, October.
    13. David Rezza Baqaee & Emmanuel Farhi, 2019. "The Macroeconomic Impact of Microeconomic Shocks: Beyond Hulten's Theorem," Econometrica, Econometric Society, vol. 87(4), pages 1155-1203, July.
    14. Jorge Miranda Pinto, 2021. "Production Network Structure, Service Share, and Aggregate Volatility," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 39, pages 146-173, January.
    15. Dimas Mateus Fazio & Thiago Christiano Silva & Janis Skrastins, 2020. "Economic Resilience: spillovers, courts, and vertical integration," Working Papers Series 531, Central Bank of Brazil, Research Department.
    16. Daron Acemoglu & Ufuk Akcigit & William Kerr, 2016. "Networks and the Macroeconomy: An Empirical Exploration," NBER Macroeconomics Annual, University of Chicago Press, vol. 30(1), pages 273-335.
    17. Erik Frohm & Vanessa Gunnella, 2021. "Spillovers in global production networks," Review of International Economics, Wiley Blackwell, vol. 29(3), pages 663-680, August.
    18. Pesaran, M. Hashem & Yang, Cynthia Fan, 2020. "Econometric analysis of production networks with dominant units," Journal of Econometrics, Elsevier, vol. 219(2), pages 507-541.
    19. Lee, Dongyeol, 2021. "Propagation of economic shocks through vertical and trade linkages in Korea: An empirical analysis," Japan and the World Economy, Elsevier, vol. 60(C).
    20. David Rezza Baqaee, 2018. "Cascading Failures in Production Networks," Econometrica, Econometric Society, vol. 86(5), pages 1819-1838, September.
    21. Leonidov, Andrey & Serebryannikova, Ekaterina, 2019. "Dynamical topology of highly aggregated input–output networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 518(C), pages 234-252.
    22. Daron Acemoglu & Asuman Ozdaglar & Alireza Tahbaz-Salehi, 2017. "Microeconomic Origins of Macroeconomic Tail Risks," American Economic Review, American Economic Association, vol. 107(1), pages 54-108, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:568:y:2021:i:c:s0378437120310128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.