IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v405y2014icp92-103.html
   My bibliography  Save this article

Collective behavior and the identification of phases in bicycle pelotons

Author

Listed:
  • Trenchard, Hugh
  • Richardson, Ashlin
  • Ratamero, Erick
  • Perc, Matjaž

Abstract

As an aggregate of cyclists, a peloton exhibits collective behavior similar to flocking birds or schooling fish. Positional analysis of cyclists in mass-start velodrome races allows quantitative descriptions of peloton phases based on observational data. Data from two track races are analyzed. Peloton density correlates well with cyclists’ collective power output in two clear phases, one of low density, and one of high density. The low density “stretched” phase generally indicates low frequency positional-change and single-file synchronization. The high density “compact” phase may be further divided into two phases, one of which is a laterally synchronized phase, and another is a high frequency and magnitude positional-change phase. Phases may be sub-divided further into acceleration and deceleration regimes, but these are not quantified here. A basic model of peloton division and its implications for general flocking behavior are discussed.

Suggested Citation

  • Trenchard, Hugh & Richardson, Ashlin & Ratamero, Erick & Perc, Matjaž, 2014. "Collective behavior and the identification of phases in bicycle pelotons," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 92-103.
  • Handle: RePEc:eee:phsmap:v:405:y:2014:i:c:p:92-103
    DOI: 10.1016/j.physa.2014.03.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437114001964
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2014.03.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Shuichao & Ren, Gang & Yang, Renfa, 2013. "Simulation model of speed–density characteristics for mixed bicycle flow—Comparison between cellular automata model and gas dynamics model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(20), pages 5110-5118.
    2. Trenchard, Hugh, 2013. "Peloton phase oscillations," Chaos, Solitons & Fractals, Elsevier, vol. 56(C), pages 194-201.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Griselda López & Sara Moll & Ana María Pérez-Zuriaga & Alfredo García, 2022. "Evaluation of the Influence of Road Geometry on Overtaking Cyclists on Two-Lane Rural Roads," IJERPH, MDPI, vol. 19(15), pages 1-14, July.
    2. Trenchard, Hugh, 2015. "The peloton superorganism and protocooperative behavior," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 179-192.
    3. Li, Meng & Chen, Tao & Du, Hao & Ma, Na & Xi, Xinwei, 2022. "The speed and configuration of cyclist social groups: A field study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 592(C).
    4. Trenchard, Hugh & Ratamero, Erick & Richardson, Ashlin & Perc, Matjaž, 2015. "A deceleration model for bicycle peloton dynamics and group sorting," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 24-34.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Trenchard, Hugh & Ratamero, Erick & Richardson, Ashlin & Perc, Matjaž, 2015. "A deceleration model for bicycle peloton dynamics and group sorting," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 24-34.
    2. Chen, Jingxu & Li, Zhibin & Jiang, Hang & Zhu, Senlai & Wang, Wei, 2017. "Simulating the impacts of on-street vehicle parking on traffic operations on urban streets using cellular automation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 880-891.
    3. Alexander Bigazzi & Robin Lindsey, 2019. "A utility-based bicycle speed choice model with time and energy factors," Transportation, Springer, vol. 46(3), pages 995-1009, June.
    4. Jin, Sheng & Qu, Xiaobo & Zhou, Dan & Xu, Cheng & Ma, Dongfang & Wang, Dianhai, 2015. "Estimating cycleway capacity and bicycle equivalent unit for electric bicycles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 225-248.
    5. Li, Qiaoru & Zhang, Zhe & Li, Kun & Chen, Liang & Wei, Zhenlin & Zhang, Jingchun, 2020. "Evolutionary dynamics of traveling behavior in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    6. Paulsen, Mads & Rasmussen, Thomas Kjær & Nielsen, Otto Anker, 2019. "Fast or forced to follow: A speed heterogeneous approach to congested multi-lane bicycle traffic simulation," Transportation Research Part B: Methodological, Elsevier, vol. 127(C), pages 72-98.
    7. Rui Jiang & Mao-Bin Hu & Qing-Song Wu & Wei-Guo Song, 2017. "Traffic Dynamics of Bicycle Flow: Experiment and Modeling," Transportation Science, INFORMS, vol. 51(3), pages 998-1008, August.
    8. Fister, Iztok & Ljubič, Karin & Suganthan, Ponnuthurai Nagaratnam & Perc, Matjaž & Fister, Iztok, 2015. "Computational intelligence in sports: Challenges and opportunities within a new research domain," Applied Mathematics and Computation, Elsevier, vol. 262(C), pages 178-186.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:405:y:2014:i:c:p:92-103. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.